Effect of a novel heat treatment process on microstructure and mechanical properties of medium carbon steel

PENG Yan, LIU Cai-yi, WANG Ning-ning, KONG Ling

Iron and Steel ›› 2021, Vol. 56 ›› Issue (1) : 85-90.

PDF(2467 KB)
Welcome to visit Iron and Steel, July 26, 2025
PDF(2467 KB)
Iron and Steel ›› 2021, Vol. 56 ›› Issue (1) : 85-90. DOI: 10.13228/j.boyuan.issn0449-749x.20200232
Materials

Effect of a novel heat treatment process on microstructure and mechanical properties of medium carbon steel

Author information +
History +

Abstract

To improve the strength and plasticity of high strength steel, based on the traditional quenching-partitioning-tempering (Q-P-T) process a novel deforming-quenching-partitioning-tempering (D-Q-P-T) process was proposed by a medium carbon steel. The microstructure evolution and mechanical property were investigated based on the SEM,TEM,X-ray diffraction characteristic techniques and mechanical properties tests. The mechanism of quenching-partitioning-tempering process to improve the strength plasticity of steel were discussed. The deforming-quenching-partitioning-tempering process was used to obtain the lath like martensite and retained austenite with high dislocation density,which realizes the design idea of multiphase structure of steel. Compared with the traditional quenching-partitioning-tempering process,the deforming-quenching-partitioning-tempering process can increase the tensile strength by 58 MPa and the elongation by 5%. The research is of great significance for realizing automobile lightweight and widening the application field of high strength steel.

Key words

deforming-quenching-partitioning-tempering / microstructure / mechanical property / product of strength and ductility / process

Cite this article

Download Citations
PENG Yan, LIU Cai-yi, WANG Ning-ning, et al. Effect of a novel heat treatment process on microstructure and mechanical properties of medium carbon steel[J]. Iron and Steel, 2021, 56(1): 85-90 https://doi.org/10.13228/j.boyuan.issn0449-749x.20200232

References

[1] 王存宇,杨洁,常颖,等. 先进高强度汽车钢的发展趋势与挑战[J]. 钢铁,2019,54(2):1.(WANG Cun-yu,YANG Jie,CHANG Ying,et al. Development trend and challenge of advanced high strength automobile steels[J]. Iron and Steel,2019,54(2):7.)
[2] 李黎,李敏,江自然,等. 低合金高强钢HSLA380再结晶温度的研究[J]. 轧钢,2017,34(1):16.(LI Li,LI Min,JIANG Zi-ran,et al. Research on recrystallization temperature of high strength low alloy steel of HSLA380[J]. Steel Rolling,2017,34(1):16.)
[3] 王爱华. 我国汽车用钢市场及其发展趋势[J]. 轧钢,2012,29(6):49.(WANG Ai-hua. The market and development trends of automobile steel in China[J]. Steel Rolling,2012,29(6):49.)
[4] 李春诚,佟铁印,王亚东,等. 连退工艺对低合金高强钢HC300LA力学性能的影响[J]. 中国冶金,2017,27(3):28.(LI Chun-cheng,TONG Tie-yin,WANG Ya-dong,et al. Effect of continuous annealing process on mechanical properties of high strength low alloy steel HC300LA[J]. China Metallurgy, 2017, 27(3): 28.
[5] 孔玲,刘才溢,彭艳. 非均匀温度场下变梯度特性热成形技术研究[J]. 机械工程学报,2017,53(8):75.(KONG Ling,LIU Cai-yi,PENG Yan. Study on variable gradient characteristics hot forming under non-uniform temperature field[J]. Journal of Mechanical Engineering,2017,53(8):75.)
[6] 康永林,朱国明. 中国汽车发展趋势及汽车用钢面临的机遇与挑战[J]. 钢铁,2016,49(12):1.(KANG Yong-lin,ZHU Guo-ming. Development trend of China′s automobile industry and the opportunities and challenges of steels for automobiles[J]. Iron and Steel,2016,49(12):1.)
[7] Giuliano A,Riccardo D,Dario R,et al. The role of microstructure on tensile plastic behavior of ductile iron GJS 400 produced through different cooling rates[J]. Metals,2019,9(9):1282.
[8] 韩志勇,张明达,徐海峰,等. 高性能汽车钢组织性能特点及未来研发方向[J]. 钢铁,2016,51(2):1.(HAN Zhi-yong,ZHANG Ming-da,XU Hai-feng,et al. Research and application of high performance automobile steel[J]. Iron and Steel,2016,51(2):1.)
[9] Omer Necati Cora,Muammer Koc. Promises and problems of ultra/advanced high strength steel utilization in auto industry[C]//7th Automotive Technologies Congress. Bursa:Turkey,2014:1.
[10] Speer J G,Matlock D K,De Cooman B C,et al. Carbon partitioning into austenite after martensite transformation[J]. Acta Materialia,2003,51(9):2611.
[11] Matlock D K,Brautigam V E,Speer J G. In application of the quenching and partitioning (Q&P) process to a medium-carbon,high-Si microalloyed bar steel[J]. Materials Science Forum,2003,426:1089.
[12] Speer J G,Matlock D K. Recent developments in low-carbon sheet steels[J]. Journal of the Minerals,2002,54(7):19.
[13] Gerdemann F L H,Speer J G,Matlock D K,et al. Microstructure and hardness of steel grade 9260 heat-treated by the quenching and partitioning (Q&P) process[J]. Materials Science and Technology,2004,1:439.
[14] 徐祖耀. 用于超高强度钢的淬火-碳分配-回火(沉淀)(Q-P-T)工艺[J]. 热处理,2008,23(2):6.(XU Zu-yao. Quenching partitioning tempering(precipitatjon) (Q-P-T) process for uitrahih str ength steel[J]. Heat Treatment,2008,23(2):6.)
[15] 刘奇正,孟庆平,戎咏华,等. 机械合金化工艺对Fe-Ni合金显微结构的影响[J]. 上海交通大学学报,2004(10):82.(LIU Qi-zheng,MENG Qing-ping,RONG Yong-hua,et al. The effect of mechanical alloying technology on microstructure of Fe-Ni alloy[J]. Journal of Shanghai Jiao Tong University,2004(10):82.)
[16] 孟庆平,戎咏华,徐祖耀. 马氏体相变的形核问题[J]. 金属学报,2004(4):3.(MENG Qing-ping,RONG Yong-hua,XU Zu-yao. Nucleation of martensitic transformation[J]. Acta Metallurgica Sinica,2004(4):3.)
[17] ZHOU S,ZHANG K,WANG Y,et al. High strength-elongation product of Nb-microalloyed low-carbon steel by a novel quenching-partitioning-tempering process[J]. Materials Science and Engineering A,2011,528(27):8006.
[18] ZHOU S,ZHANG K,CHEN N,et al. Investigation on high strength hot-rolled plates by quenching-partitioning-tempering process suitable for engineering[J]. ISIJ International,2011,51(10):1688.
[19] 王存宇,常颖,杨洁,等. 热变形和淬火配分处理的复合作用对低碳合金钢马氏体相变机制的影响[J]. 金属学报,2015,51(8):19.(WANG Cun-yu,CHANG Ying,YANG Jie,et al. The combined effect of hot deformation plus ouenching and partitioning treatment on martensite transformation of low carbon alloyed steel[J]. Acta Metallurgica Sinica,2015,51(8):19.)
[20] 付勇涛,刘静,王存字,等. 热变形对淬火配分低碳CrNi3Si2MoV钢组织和力学性能的影响[J]. 特殊钢,2014,35(4):55.(FU Yong-tao,LIU Jing,WANG Cun-yu,et al. Effect of hot deformation on structure and mechanical properties of quenched and partitioned low carbon CrNi3Si2MoV steel[J]. Special Steel,2014,35(4):55.)
[21] 张玉杰,王存宇,曹文全,等. 热变形+Q&P工艺处理钢的微观组织和硬度[J]. 热加工工艺,2013,42(10):188.(ZHANG Yu-jie,WANG Cun-yu,CAO Wen-quan,et al. Microstructure and hardness of steel treated by hot deformation plus quenching and partitioning process[J]. Hot Working Technology,2013,42(10):188.)
[22] 梁新邦,李久林,陶立英,等. 金属材料室温拉伸试验方法[M]. 北京:中国标准出版社,2002.(LIANG Xin-bang,LI Jiu-lin,TAO Li-ying,et al. Metallic Materials-Tensile Testing at Ambient Temperature[M]. Beijing:Standards Press of China,2002.)
PDF(2467 KB)

Accesses

Citation

Detail

Sections
Recommended

/