An entropy-based evaluation model of operation order of steel manufacturing process

HAN Wei-gang, HU Chang-qing

Iron and Steel ›› 2021, Vol. 56 ›› Issue (5) : 122-128.

PDF(1283 KB)
Welcome to visit Iron and Steel, July 27, 2025
PDF(1283 KB)
Iron and Steel ›› 2021, Vol. 56 ›› Issue (5) : 122-128. DOI: 10.13228/j.boyuan.issn0449-749x.20200365
Technology Exchange

An entropy-based evaluation model of operation order of steel manufacturing process

Author information +
History +

Abstract

The quantitative evaluation of the operation order of the steel manufacturing process is an important issue in the management and control of steel enterprises. In order to quantitatively study the order of process from the aspect of connection and matching state of devices,referring to information entropy, the average uncertainty of input and output of unit i in the steel manufacturing process as its operation state entropy E(i)was defined,the ratio of operation state entropy and maximum operating state entropy E(i)/Emax(i) as its operation disorder degree was taken,and R(i)=1-E(i)/Emax(i) as its operation order degree was taken. On this basis,the weighted average value of the operation order degree of all units is defined as the operation order degree of the steel manufacturing process,which is used as the evaluation index of operation order of steel manufacturing process. Finally,the BOF-CC section of a steel enterprise is taken as an example,the operation order degree in a certain month is calculated to be 0.396 1.

Key words

steel manufacturing process / operation state / order / evaluation model / entropy

Cite this article

Download Citations
HAN Wei-gang, HU Chang-qing. An entropy-based evaluation model of operation order of steel manufacturing process[J]. Iron and Steel, 2021, 56(5): 122-128 https://doi.org/10.13228/j.boyuan.issn0449-749x.20200365

References

[1] 徐金梧. 中国冶金装备技术现状及发展对策思考[J]. 中国冶金,2009,19(11):1.(XU Jin-wu. The current situation of metallurgical equipment technology in China and developing strategies analysis[J]. China Metallurgy,2009,19(11):1.)
[2] “黑色金属矿产资源强国战略研究”专题组. 我国黑色金属资源发展形势研判[J]. 中国工程科学,2019,21(1):97.(Tash Group for the Strategic Research on Great Power of Ferrous Metal Mineral Resources.Research on development situation of ferrous metal resources in China[J]. Engineering Science,2019,21(1):97.)
[3] 上官方钦,郦秀萍,周继程,等. 中国废钢资源发展战略研究[J]. 钢铁,2020,55(6):8.(SHANGGUAN Fang-qin,LI Xiu-ping,ZHOU Ji-cheng,et al. Strategic research on development of steel scrap in China[J]. Iron and Steel,2020,55(6):8.)
[4] 李新创,李冰. 全球温控目标下中国钢铁工业低碳转型路径[J]. 钢铁,2019,54(8):224.(LI Xin-chuang,LI Bing. Low carbon transition path of China's iron and steel industry under global temperature control target[J]. Iron and Steel,2019,54(8): 224.)
[5] 刘文仲. 中国钢铁工业智能制造现状及思考[J]. 中国冶金,2020,30(6): 1.(LIU Wen-zhong. Current situation and thinking of intelligent manufacturing in China's iron and steel industry[J]. China Metallurgy,2020,30(6):1.)
[6] 周继程,上官方钦,丁毅,等. 钢铁制造流程“界面”技术与界面能量损失分析[J]. 钢铁,2020,55(12):99.(ZHOU Ji-cheng,SHANGGUAN Fang-qin,DING Yi,et al. Discuss on interface technology and energy loss of main Interface in steel manufacturing process[J]. Iron and Steel,2020,55(12):99.)
[7] 韩伟刚,胡长庆,孙雨含,等. 钢铁制造流程铁钢界面时间参数“涨落”特征[J]. 钢铁,2021,56(1):120.(HAN Wei-gang,HU Chang-qing,SUN Yu-han,et al. Fluctuation characteristics of time parameter of ironmaking-steelmaking interface in steel manufacturing process[J]. Iron and Steel,2021,56(1):120.)
[8] 韩伟刚,胡长庆,郦秀萍,等. 炼铁-炼钢区段界面动态运行过程建模和仿真[J]. 中国冶金,2019,29(7):17.(HAN Wei-gang,HU Chang-qing,LI Xiu-ping,et al. Modeling and simulation of dynamic operation process of ironmaking-steelmaking interface[J]. China Metallurgy,2019,29(7):17.)
[9] 姚林,王军生. 钢铁流程工业智能制造的目标与实现[J]. 中国冶金,2020,30(7):1.(YAO Lin,WANG Jun-sheng. Goal and realization of smart manufacturing in steel industry[J]. China Metallurgy,2020,30(7):1.)
[10] 王新东,常金宝,李杰,等. 冶金流程工程学在小方坯直接轧制中的应用[J]. 钢铁,2021,56(1):113.(WANG Xin-dong,CHANG Jin-bao,LI Jie,et al. Application of metallurgical process engineering in direct rolling of billet[J]. Iron and Steel,2021,56(1):113.)
[11] 张福明,钱世崇,殷瑞钰. 钢铁厂流程结构优化与高炉大型化[J]. 钢铁,2012,47(7):1.(ZHANG Fu-ming,QIAN Shi-chong,YIN Rui-yu. Blast furnace enlargement and optimization of manufacturing process structure of steel plant[J]. Iron and Steel,2012,47(7):1.)
[12] 周继程,郦秀萍,上官方钦,等. 钢铁制造流程能源转换机制与能源利用效率分析[J]. 钢铁,2019,54(4):73.(ZHOU Ji-cheng,LI Xiu-ping,SHANGGUAN Fang-qin,et al. Energy conversion mechanism and energy efficiency of steel manufacturing process[J]. Iron and Steel,2019,54(4):73.)
[13] 王竹溪. 热力学[M]. 2版. 北京:北京大学出版社,2005.
(WANG Zhu-xi.Thermodynamics[M]. 2nd ed. Beijing:Beijing University Press,2005.)
[14] 苏汝铿. 统计物理学[M]. 2版. 北京:高等教育出版社,2004.
(SU Ru-keng.Statistical Physics[M]. 2nd ed. Beijing:Higher Education Press,2004.)
[15] 傅祖芸. 信息论:基础理论与应用[M]. 3版. 北京:电子工业出版社,2011.
(FU Zu-yun.Information Theory:Principle and Application[M]. 3rd ed. Beijing:Publishing House of Electronic Industry,2011.)
[16] 殷瑞钰. 冶金流程工程学[M]. 2版. 北京:冶金工业出版社,2009.
(YIN Rui-yu.Metallurgical Process Engineering[M]. 2nd ed. Beijing:Metallurgical Industry Press,2009.)
[17] 殷瑞钰. 冶金流程集成理论与方法[M]. 北京:冶金工业出版社,2013.
(YIN Rui-yu.Theory and Method of Metallurgical Process Integration[M]. Beijing:Metallurgical Industry Press,2013.)
PDF(1283 KB)

11

Accesses

0

Citation

Detail

Sections
Recommended

/