A review on high manganese steels: Control of chemical composition,microstructure and properties

ZHANG Fucheng, CHEN Chen, LIU Shuai, ZHANG Peng, YANG Zhinan

Iron and Steel ›› 2024, Vol. 59 ›› Issue (3) : 1-18.

PDF(4154 KB)
Welcome to visit Iron and Steel, July 26, 2025
PDF(4154 KB)
Iron and Steel ›› 2024, Vol. 59 ›› Issue (3) : 1-18. DOI: 10.13228/j.boyuan.issn0449-749x.20230414
Technical Reviews

A review on high manganese steels: Control of chemical composition,microstructure and properties

Author information +
History +

Abstract

Since the invention of Hadfield high manganese steel in 1882,researchers from all over the world have been attracted to do plenty of research works about the design of chemical composition,control of microstructure,development of production process and application,and others. Up to now,the application field of the specific steel with a history of 100 years has expanded from the wear-resistant steels to automotive steels,steels for corrosion and low-temperature environment,and even functional material. Several key steel products have been developed,which became the most typical and widely used steel series in the special steel field,and greatly enriched the steel world. The research,manufacturing,and application of these high manganese steels are of great significance for promoting the innovation in steel manufacturing technology and the development of downstream industries. Herein, the origin and development of high manganese steels are introduced. The research progress on chemical compositions,microstructures and properties of high manganese wear-resistant steel,automotive steel,cryogenic steel,nonmagnetic steel and damping alloy that used in typical application fields are emphatically reviewed. The control methods of microstructure and properties of these steels and the corresponding benefits are summarized and illustrated with examples in detail. It is pointed that the high content of manganese ensures the specific microstructure,mechanical and physical properties of high manganese steel,but also causes common problems of breakout in continuous casting process,unstable performance of welded joints,and insufficient expansion performance involved in the actual production,which limits the application of high manganese steel to some extent. An idea of chemical composition design for novel high manganese steel is proposed by analyzing the carbon and manganese contents and microstructure characteristics of the current high manganese steels. The future trends of high manganese steel in the field of theoretical research and application are also discussed.

Key words

high manganese steel / chemical composition / microstructure / property / review

Cite this article

Download Citations
ZHANG Fucheng, CHEN Chen, LIU Shuai, et al. A review on high manganese steels: Control of chemical composition,microstructure and properties[J]. Iron and Steel, 2024, 59(3): 1-18 https://doi.org/10.13228/j.boyuan.issn0449-749x.20230414

References

[1] 毛麒瑞. 锰在工业中的应用[J]. 化工之友,2001(1):27.(MAO Q R. Application of manganese in industry[J]. Friend of Chemical Industry,2001(1):27.)
[2] 张芳. 锰和炼钢工业历史的发展[J]. 中国锰业,1995(6):56.(ZHANG F. The history of manganese and steel-making industry[J]. China Manganese Industry,1995(6):56.)
[3] WEEKS J D. Hadfield's manganese steel[J]. Science,1888,12(306):284.
[4] SABZI M,FARZAM M. Hadfield manganese austenitic steel: A review of manufacturing processes and properties[J]. Materials Research Express,2019,6(10):1065c2.
[5] ZHANG F C,LÜ B,WANG T S,et al.Explosion hardening of Hadfield steel crossing[J]. Materials Science and Technology,2010,26(2):223.
[6] 魏世忠,徐流杰. 钢铁耐磨材料研究进展[J]. 金属学报,2020,56(4):523.(WEI S Z,XU L J. Review on research progress of steel and iron wear-resistant materials[J]. Acta Metallurgica Sinica,2020,56(4):523.)
[7] 刘倩,郑小平,张荣华,等. 新型汽车用高强度中锰钢研究现状及发展趋势[J]. 材料导报,2019,33(7):1215.(LIU Q,ZHENG X P,ZHANG R H,et al.Medium manganese high strength steel for automotive application:Status quo and prospects[J]. Materials Reports,2019,33(7):1215.)
[8] 付瑞东,邱亮,王存宇,等. 氮强化高锰奥氏体低温钢的拉伸应变硬化行为[J]. 材料研究学报,2005,19(2):193.(FU R D,QIU L,WANG C Y,et al. Tensile strain hardening behaviors of nitrogen strengthening high manganese austenitic cryogenic steel[J]. Chinese Journal of Materials Research,2005,19(2):193.)
[9] 朱权利,刘艳肖,陈家坚. 粉末冶金高锰无磁钢Fe-25Mn-xCu-C的组织与性能研究[J]. 粉末冶金工业,2019,29(1):28.(ZHU Q L,LIU Y X,CHEN J J. Study on microstructure and mechanical properties of powder metallurgy high manganese non-magnetic Fe-25Mn-xCu-C steels[J]. Powder Metallurgy Industry,2019,29(1):28.)
[10] SHIN S,KWON M,CHO W,et al.The effect of grain size on the damping capacity of Fe-17wt%Mn[J]. Materials Science and Engineering A,2017,683:187.
[11] 王耘涛,布茂东. 低镍和无镍奥氏体不锈钢的研究现状及进展[J]. 金属热处理,2013,38(1):15.(WANG Y T,BU M D. Present research and progress on low-nickel and nickel-free austenitic stainless steels[J]. Heat Treatment of Metals,2013,38(1):15.)
[12] 朱瑞富. 变质系列锰钢耐磨机理的研究[D]. 哈尔滨:哈尔滨工业大学,1994.(ZHU R F.Study on Wear Resistance Mechanism of Modified Manganese Steel[D]. Harbin:Harbin Institute of Technology,1994.)
[13] 张福成. 辙叉钢及其热加工技术[M]. 北京:机械工业出版社,2011.(ZHANG F C.Crossing Steels and Their Hot Working Technologies[M]. Beijing:China Machine Press,2011.)
[14] 张福成. 介稳奥氏体锰钢磨粒磨损与拉伸变形行为及其组织变化[J]. 材料导报,1997,4(4):73.(ZHANG F C. Abrasive wear and tensile deformation behavior and microstructure change of metastable austenitic manganese steel[J]. Materials Reports,1997,4(4):73.)
[15] 李树索,陈希杰. 超高锰钢加工硬化及耐磨性的研究[J]. 钢铁研究学报,1997,9(4):38.(LI S S,CHEN X J. Work hardening and wearability of superhigh manganese steel[J]. Journal of Iron and Steel Research,1997,9(4):38.)
[16] CHEN C,LÜ B,MA H,et al.Wear behavior and the corresponding work hardening characteristics of Hadfield steel[J]. Tribology International,2018,121:389.
[17] 张福成. 铁路辙叉专用含氮奥氏体锰铬钢:中国,CN1236097C[P].2003-10-29[2006-01-11].(ZHANG F C. Nitrogen-Bearing Austenitic Manganese Chromium Steel for Railway Frog: China, CN1236097C[P]. 2003-10-29[2006-01-11].)
[18] CHEN C,ZHANG F,LÜ B,et al.Asynchronous effect of N+Cr alloying on the monotonic and cyclic deformation behaviors of Hadfield steel[J]. Materials Science and Engineering A,2019,761:138015.
[19] KANG J,ZHANG F C.Deformation,fracture,and wear behaviours of C+N enhancing alloying austenitic steels[J]. Materials Science Engineering A,2012,558:623.
[20] 马华,陈晨,王琳,等. Mo合金化处理对高锰钢磨损行为的影响[J]. 机械工程学报,2020,56(14):81.(MA H,CHEN C,WANG L,et al. Effect of Mo alloying treatment on wear behavior of high manganese steel[J]. Journal of Mechanical Engineering,2020,56(14):81.)
[21] 颜晓博. 钒、钛对高锰钢显微组织、力学性能和耐磨性能的影响[D]. 广州:暨南大学,2018.(YAN X B.Effect of Vanadium and Titanium on Microstructure,Mechanical Properties and Wear Resistance of High Manganese Steel[D]. Guangzhou:Jinan University,2018.)
[22] AYADI S,HADJI A,HAHAN K,et al.Microstructure and wear behavior of a Cr-Mo-Nb alloyed manganese steel[J]. Journal of Materials Research and Technology,2020,9(5):11545.
[23] 张福成,朱瑞富. 介稳奥氏体锰钢耐磨性的研究[J]. 钢铁,1996,31(1):6.(ZHANG F C,ZHU R F. Study on wear resistance of metastable austenitic manganese steel[J]. Iron and Steel,1996,31(1):6.)
[24] 张福成. 介稳奥氏体锰钢磨粒磨损与拉伸变形行为及其组织变化[D]. 哈尔滨:哈尔滨工业大学,1993.(ZHANG F C.Abrasive Wear and Tensile Deformation Behavior and Microstructure Change of Metastable Austenitic Manganese Steel[D]. Harbin:Harbin Institute of Technology,1993.)
[25] 张福成,吕博,张明,等. 高氮奥氏体钢高速铁路辙叉及其制造方法:中国,CN101736658B[P].2009-12-24[2011-08-31].(ZHANG F C,LÜ B,ZHANG M,et al. High Nitrogen Austenitic Steel for High Speed Railway Frog and Its Manufacturing Method:China, CN101736658B[P]. 2009-12-24[2011-08-31].)
[26] 陈晨. 高碳高锰奥氏体钢组织与力学性能研究[D]. 秦皇岛:燕山大学,2019.(CHEN C.Study on Microstructures and Mechanical Properties of High Carbon and High Manganese Austenitic Steels[D]. Qinghuangdao: Yanshan University,2019.)
[27] 康杰. 碳氮增强合金化奥氏体钢及其力学行为的研究[D]. 秦皇岛:燕山大学,2012.(KANG J.Study of C+N Enhancing Alloying Austenitic Steel and its Mechanical Behaviours[D]. Qinhuangdao:Yanshan University,2012.)
[28] GRIGORKIN V I,KOROTUSHENKO G V.Effect of carbon,manganese,plastic deformation,and heat treatment on the structure and properties of austenitic manganese steel[J]. Metal Science and Heat Treatment,1968,10(2):130.
[29] 张福成,陈晨,金淼,等. 一种拼装辙叉及其制备方法:中国,CN114393181B[P].2022-01-29[2022-09-23].(ZHANG F C,CHEN C,JIN M,et al. An Assembling Frog and Its Preparation Method:China,CN114393181B[P]. 2022-01-29[2022-09-23].)
[30] 王琳,马华,陈晨,等. 高锰铸钢的高温形变热处理及其组织和力学性能[J]. 上海金属,2019,41(4):40.(WANG L,MA H,CHEN C,et al. High-temperature thermo-mechanical treatment and resulting microstructures and mechanical properties for high-manganese cast steel[J]. Shanghai Metals,2019,41(4):40.)
[31] 林芷青,张福成,马华,等. 锻焊和形变热处理对铸造高锰钢辙叉耐磨性的影响[J]. 金属热处理,2021,46(8):92.(LIN Z Q,ZHANG F C,MA H,et al. Effect of FW&TMCP treatment on wear resistance of as-cast high manganese steel frog[J]. Heat Treatments of Metals,2021,46(8):92.)
[32] 张福成,王琳,陈晨,等. 一种对铸造高锰钢辙叉进行局部形变热处理方法:中国,201810109618.X[P],2018-02-05[2019-08-27].(ZHANG F C,WANG L,CHEN C,et al. A Local Thermomechanical Treatment Method for Cast High Manganese Steel Frog:China,201810109618.X[P]. 2018-02-05[2019-08-27].)
[33] 吕博. 长寿命高锰钢辙叉的研究[D]. 秦皇岛:燕山大学,2009.(LÜ B.Study on Long Lifetime Hadfield Steel Crossing[D]. Qinhuangdao:Yanshan University,2009.)
[34] 冯晓勇. 高速重击条件下高锰钢表面纳米晶的制备及组织性能研究[D]. 秦皇岛:燕山大学,2015.(FENG X Y.Investigation on the Nanocrystallization Microstructure and Properties of Hadfield Steel Induced by High Speed Pounding[D]. Qinhuangdao:Yanshan University,2015.)
[35] AZAR V,HASHEEMI B,YAZDI M R.The effect of shot peening on fatigue and corrosion behavior of 316L stainless steel in Ringer's solution[J]. Surface and Coatings Technology,2010,204:3546.
[36] 王静宜,谈育煦. 喷丸、爆炸和滚压强化对高锰钢组织结构的影响[J]. 材料科学与工艺,1992(z1):12.(WANG J Y,TAN Y X. The Effect of shot peening,explosive and rolled strengthening on the microstructures of high manganese Steel[J]. Materials Science and Technology,1992(z1):12.)
[37] MA H,CHEN C,LI J,et al.Effect of pre-deformation degree on tensile properties of high carbon high manganese steel at different strain rates[J]. Materials Science Engineering A,2022,829:142146.
[38] ZHANG F C,CHEN C,LÜ B,et al.Effect of pre-deformation mode on the microstructures and mechanical properties of Hadfield steel[J]. Materials Science Engineering A,2019,743:251.
[39] 杨志南,张福成,闫学峰,等. 一种钢的高效预硬化方法及钢制工件:中国,CN113862429B[P].2021-09-28[2023-03-03].(YANG Z N,ZHANG F C,YAN X F,et al. An Efficient Pre-Hardening Method for Steel and Steel Workpieces:China,CN113862429B[P]. 2021-09-28[2023-03-03].)
[40] JABLONSKA M B,JASIAK K,KOWALCZYK K,et al.The influence of the heat generation during deformation on the mechanical properties and microstructure of the selected TWIP steels[J]. International Journal of Material Forming,2023,16(3):1.
[41] 米振莉,唐荻,严玲,等. 高强度高塑性TWIP钢的开发研究[J]. 钢铁,2005,40(1):58.(MI Z L,TANG D,YAN L,et al. Study of high strength and high plasticity TWIP steel[J]. Iron and Steel,2005,40(1):58.)
[42] GRASSEL O,KRUGER L,FROMMEYER G,et al.High strength Fe-Mn-(Al,Si) TRIP/TWIP steels development-properties-application[J]. International Journal of Plasticity,2000,16(10/11):1391.
[43] SPITZER K H.Direct strip casting (DSC)-an option for the production of HSD® steel grades[C]//1st International Conference on Super High Strength Steels. Milano:[s.n.],2005:58.
[44] 代永娟,唐荻,米振莉,等. Fe-23Mn-0.6C TWIP钢的组织特征[J]. 热加工工艺,2010,39(2):4.(DAI Y J,TANG D,MI Z L,et al. Microstructure characteristic of Fe-23Mn-0.6C TWIP steel[J]. Hot Working Technology,2010,39(2):4.)
[45] 代永娟,米振莉,唐荻,等. Fe-Mn-C系TWIP钢的组织和性能[J]. 上海金属,2007,29(5):132.(DAI Y J,MI Z L,TANG D,et al. Microstructure and properties of the Fe-Mn-C TWIP steel[J]. Shanghai Metals,2007,29(5):132.)
[46] 李大赵,卫英慧,刘春月,等. 汽车用TWIP钢的基础研究现状[J]. 钢铁研究学报,2009,21(2):1.(LI D Z,WEI Y H,LIU C Y,et al. Fundamental research of TWIP steel for automobile[J]. Journal of Iron and Steel Research,2009,21(2):1.)
[47] NEU R W.Performance and characterization of TWIP steels for automotive applications[J]. Materials Performance and Characterization,2013,2(1):244.
[48] LIU S,QIAN L,MENG J,et al.Simultaneously increasing both strength and ductility of Fe-Mn-C twinning-induced plasticity steel via Cr/Mo alloying[J]. Scripta Materialia,2017,127:10.
[49] de COOMAN B C,CHIN K G,KIM J. High Mn TWIP steels for automotive applications[J]. New Trends and Developments in Automotive System Engineering,2011(1):101.
[50] DUMAY A,CHATEAU J P,ALLAIN S,et al.Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe-Mn-C steel[J]. Materials Science Engineering A,2008,483:184.
[51] 李清稳,刘帅,耿一帆,等. 汽车用TWIP钢强化方式研究进展[J]. 材料科学,2019,9(5):511.(LI Q W,LIU S,GENG Y F,et al. Research progress of TWIP steel strengthening method for automobile[J]. Journal of Materials Science,2019,9(5):511.)
[52] PARK K T,JIN K G,HAN S H,et al.Stacking fault energy and plastic deformation of fully austenitic high manganese steels:Effect of Al addition[J]. Materials Science Engineering A,2010,527(16/17):3651.
[53] PARK I J,JEONG K H,JUNG J G,et al.The mechanism of enhanced resistance to the hydrogen delayed fracture in Al-added Fe-18Mn-0.6 C twinning-induced plasticity steels[J]. International Journal of Hydrogen,2012,37(12):9925.
[54] JEONG K,JIN J E,JUNG Y S,et al.The effects of Si on the mechanical twinning and strain hardening of Fe-18Mn-0.6 C twinning-induced plasticity steel[J]. Acta Materialia,2013,61(9):3399.
[55] 周景一,朱立光,孙立根,等. Nb微合金化汽车用TWIP钢的研究进展[J]. 中国冶金,2022,32(3):9.(ZHOU J Y,ZHU L G,SUN L G,et al. Research progress of Nb microalloying TWIP steel for automobile[J]. China Metallurgy,2022,32(3):9.)
[56] KWON E P,KIM D Y,Park H K.Deformation twinning in Nb-microalloyed Fe-Mn-C-Al twinning-induced plasticity steel[J]. Journal of Materials Engineering and Performance,2017,26(9):4500.
[57] 张志波,刘振宇,张维娜. VC沉淀粒子对TWIP钢加工硬化行为的影响[J]. 金属学报,2012,48(9):1067.(ZHANG Z B,LIU Z Y,ZHANG W N,et al.Effect of VC particles on the strain hardening behavior of TWIP steel[J]. Acta Metallurgica Sinica,2012,48(9):1067.)
[58] SCOTT C,REMY B,COLLET J L,et al.Precipitation strengthening in high manganese austenitic TWIP steels[J]. International Journal of Materials Research,2011,102(5):538.
[59] 钟灵强,汪志刚,陈荣春,等. 稀土在汽车用先进高强钢中的研究现状[J]. 有色金属科学与工程,2020,11(6):114.(ZHONG L Q,WANG Z G,CHEN R C,et al. Research status of rare earth in advanced high strength steel for automobile[J]. Nonferrous Metals Science and Engineering,2020,11(6):114.)
[60] 王立辉,唐荻,赵爱民,等. 稀土含量对TRIP/TWIP钢组织和性能的影响[J]. 材料热处理学报,2016,37(2):110.(WANG L H,TANG D,ZHAO A M,et al. Effects of RE content on microstructure and properties of TRIP/TWIP steels[J]. Transactions of Materials and Heat Treatment,2016,37(2):110.)
[61] ZHAO Y,WANG J,ZHOU S,et al.Effects of rare earth addition on microstructure and mechanical properties of a Fe-15Mn-1.5Al-0.6C TWIP steel[J]. Materials Science Engineering A,2014,608:106.
[62] RAHMAN K M,VORONTSOV V A,DYE D.The effect of grain size on the twin initiation stress in a TWIP steel[J]. Acta Materialia,2015,89:247.
[63] ZAN N,DING H,GUO X F,et al.Effects of grain size on hydrogen embrittlement in a Fe-22Mn-0.6C TWIP steel[J]. International Journal of Hydrogen,2015,40(33):10687.
[64] SHAO C W,ZHANG P,ZHU Y K,et al.Improvement of low-cycle fatigue resistance in TWIP steel by regulating the grain size and distribution[J]. Acta Materialia,2017,134:128.
[65] BOUAZIZ O,ALLAIN S,SCOTT C P,et al.High manganese austenitic twinning induced plasticity steels:A review of the microstructure properties relationships[J]. Current Opinion in Solid State and Materials Science,2011,15(4):141.
[66] BOUAZIZ O,SCOTT C P,PETITGAND G.Nanostructured steel with high work-hardening by the exploitation of the thermal stability of mechanically induced twins[J]. Scripta Materialia,2009,60(8):714.
[67] 王德庆. 高锰奥氏体低温钢的组织与性能[J]. 低温与特气,1984(3):27.(WANG D Q. Microstructure and mechanical properties of high manganese austenitic cryogenic steel[J]. Low Temperature and Specialty Gases,1984(3):27.)
[68] CHARLES J,BERZHEGAN A,LUTTS A,et al.New cryogenic materials iron-manganese-aluminum alloys[J]. Metal Progress,1981,119(6):71.
[69] 贺英群. 浦项开发出高锰钢大容量LNG贮藏罐[J]. 鞍钢技术,2014(2):62.(HE Y Q. POSCO developed high manganese steel large capacity LNG storage tank[J]. Angang Technology,2014(2):62.)
[70] 郭伟,蔡艳,华学明. LNG用低温高锰钢及其焊接技术发展[J]. 电焊机,2020,50(11):7.(GUO W,CAI Y,HUA X M. Development of low-temperature high manganese steel for LNG and its welding technology[J]. Electric Welding Machine,2020,50(11):7.)
[71] WANG Y,SHI B,HE Y,et al.A fine grain,high Mn steel with excellent cryogenic temperature properties and corresponding constitutive behaviour[J]. Materials,2018,11(2):253.
[72] RUDSKOI A I,PARSHIN S G.Advanced trends in metallurgy and weldability of high-strength cold-resistant and cryogenic steels[J]. Metals,2021,11(12):1891.
[73] CHEN J,REN J,LIU Z.Deformation microstructures as well as strengthening and toughening mechanisms of low-density high Mn steels for cryogenic applications[J]. Journal of Materials Research and Technology,2021,13:947.
[74] LEE J,SOHN S S,HONG S,et al.Effects of Mn addition on tensile and Charpy impact properties in austenitic Fe-Mn-C-Al-based steels for cryogenic applications[J]. Metallurgical and Materials Transactions A,2014,45(12):5419.
[75] SOHN S S,HONG S,LEE J,et al.Effects of Mn and Al contents on cryogenic-temperature tensile and charpy impact properties in four austenitic high-Mn steels[J]. Acta Materialia,2015,100:39.
[76] WANG X J,SUN X J,SONG C,et al.Enhancement of yield strength by chromium/nitrogen alloying in high-manganese cryogenic steel[J]. Materials Science and Engineering A,2017,698:110.
[77] REN J,CHEN Q,CHEN J,et al.Enhancing strength and cryogenic toughness of high manganese TWIP steel plate by double strengthened structure design[J]. Materials Science and Engineering A,2020,786:139397.
[78] CHEN J,DONG F,LIU Z,et al.Grain size dependence of twinning behaviors and resultant cryogenic impact toughness in high manganese austenitic steel[J]. Journal of Materials Research and Technolology,2021,10:175.
[79] LI Y,LU Y,LI W,et al.Hierarchical microstructure design of a bimodal grained twinning-induced plasticity steel with excellent cryogenic mechanical properties[J]. Acta Materialia,2018,158:79.
[80] FU R D,ZHENG Y Z,REN Y B.Mechanical properties of 32Mn-7Cr-0.6Mo-0.3 N austenitic steel for cryogenic applications[J]. Journal of Materials Engineering and Performance,2001,10(4):456.
[81] LUO Q,WANG H H,LI G Q,et al.On mechanical properties of novel high-Mn cryogenic steel in terms of SFE and microstructural evolution[J]. Materials Science and Engineering A,2019,753:91.
[82] REN J,CHEN Q,CHEN J,et al.Role of vanadium additions on tensile and cryogenic-temperature charpy impact properties in hot-rolled high-Mn austenitic steels[J]. Materials Science and Engineering A,2021,811:141063.
[83] CHEN J,REN J,LIU Z,et al.The essential role of niobium in high manganese austenitic steel for application in liquefied natural gas tanks[J]. Materials Science and Engineering A,2020,772:138733.
[84] 赵燕青,齐建军,孙力,等. 终轧温度对高锰奥氏体低温钢组织和力学性能的影响[J]. 河北冶金,2022(6):14.(ZHAO Y Q,QI J J,SUN L,et al. Effect of finishing rolling temperature on microstructure and mechanical properties of high manganese austenitic cryogenic steel[J]. Hebei Metallurgy,2022(6):14.)
[85] 马彪. N18和N20高锰无磁钢的组织和性能研究[D]. 沈阳:东北大学,2013.(MA B.Study on Microstructure and Properties of N18 and N20 Non-Magnetic Steel[D]. Shenyang:Northeastern University,2013.)
[86] 赵先存,杨志勇,宋为顺,等. 钢铁结构材料的功能化[M]. 北京:冶金工业出版社,2010.(ZHAO X C,YANG Z Y,SONG W S,et al.Functionalization of Structural Steel Materials[M]. Beijing:Metallurgical Industry Press,2010.)
[87] 田一,巩学海,王广克,等. 高锰无磁钢在输变电设备中的应用[J]. 中国锰业,2016,34(5):94.(TIAN Y,GONG X H,WANG G K,et al. Application of high manganese non-magnetic steel in transformation equipment[J]. China Manganese Industry,2016,34(5):94.)
[88] 王旭中,田瑞生,刘进益,等. ZG25Mn18Cr4 热处理强韧化组织结构根据的研究[J]. 金属热处理学报,1996,17(1):27.(WANG X Z,TIAN R S,LIU J Y,et al. Investigation on structure basis of toughening-strengthening heat treatment for steel ZG25Mn18Cr4[J]. Transactions of Materials and Heat Treatment,1996,17(1):27.)
[89] 王敏,周超梅,姚长贵,等. 高锰无磁钢50Mn18Cr4V的研究[J]. 热加工工艺,2008,37(18):69.(WANG M,ZHOU C M,YAO C G,et al. Study on 50Mn18Cr4V steel with high manganese and low magnetic[J]. Hot Working Technology,2008,37(18):69.)
[90] KRIZ J,CHAP A,PETSA P.Kinetics of precipitation hardening of high-manganese austenitic steel[J]. Metal Science and Heat Treatments,1980,22(5):318.
[91] GORKUNOV E S,GLADKOVSKII S V,ZADVORKIN S M,et al.Evolution of magnetic properties of Fe-Mn and Fe-Mn-Cr steels with different stability of austenite during plastic deformation[J]. The Physics of Metals and Metallography,2008,105(4):343.
[92] TONE S,YAMAGA M,KASAMATSU Y.A high manganese non-magnetic structural steel plate for the construction of fusion reactors[J]. Journal of Nuclear Materials,1981,103:139.
[93] CAO J,ZHAO A,LIU J,et al.Effect of Nb on microstructure and mechanical properties in non-magnetic high manganese steel[J]. Journal of Iron and Steel Research International,2014,21(6):600.
[94] LI C S,XU X F,MA B,et al.Experimental research on non-magnetic steel 30Mn27Al4V[J]. Advanced Materials Research,2012,479:147.
[95] 马彪. Fe-20/27Mn-4Al-0.3C无磁钢热轧板的组织与性能研究[D]. 沈阳:东北大学,2017.(MA B.Microstructure and Properties of Fe-20/27 Mn-4Al-0.3C Non-Magnetic Hot Rolled Plate Steels[D]. Shenyang:Northeastern University,2017.)
[96] TANAKA H,KONDO N,FUJITA K,et al.Suppression of cryogenic intergranular fracture through heat treatments and roles of boron in high manganese non-magnetic steels[J]. ISIJ International,1990,30(8):646.
[97] SIPOS K,REMY L,PINEAU A.Influence of austenite predeformation on mechanical properties and strain-induced martensitic transformations of a high manganese steel[J]. Metallurgical Transactions A,1976,7(5):857.
[98] WENG R,LIU S,HE J C.Research and industrialization status of Mn-based damping alloys[J]. Science and Technology Review,2014,32(3):77.
[99] 李宁,胥永刚,于学勇,等. 碳,镍元素对铁-锰合金的阻尼性能与相变行为的影响[J]. 机械工程材料,2006,30(3):8.(LI N,XU Y G,YU X Y,et al. Effect of carbon and nickel on phase transformation behavior and damping capacity in Fe-Mn alloys[J]. Materials for Mechanical Engineering,2006,30(3):8.)
[100] 于学勇,易风,华征潇,等. 钛对铁锰基减振合金阻尼性能和耐蚀性能的影响[J]. 腐蚀与防护,2011,32(6):438.(YU X Y,YI F,HUA Z X,et al. Effect of Ti on damping and corrosion properties of Fe-Mn alloys[J]. Corrosion and Protection,2011,32(6):438.)
[101] 于学勇,程凤军,杨廷贵. 含氮铁锰合金阻尼性能和力学性能的研究[J]. 兵器材料科学与工程,2007,30(1):63.(YU X Y,CHENG F J,YANG T G. Influence of nitrogen on damping and mechanical properties of Fe-Mn alloys[J]. Ordnance Material Science and Engineering,2007,30(1):63.)
[102] HUANG S K,LI N,WEN Y H,et al.Effect of Si and Cr on stacking fault probability and damping capacity of Fe-Mn alloy[J]. Materials Science and Engineering A,2008,479(1/2):223.
[103] BAIK S H,KIM J C,JEE K K,et al.Transformation behavior and damping capacity in Fe-17%Mn-X%CY%Ti alloy[J]. ISIJ International,1997,37(5):519.
[104] JUN J H,KONG D K,CHOI C S.The influence of Co on damping capacity of Fe-Mn-Co alloys[J]. Materials Research Bulletin,1998,33(10):1419.
[105] KIM J C,BAIK S H,JUN J H,et al.Effect of chromium addition on damping capacity,mechanical property,and corrosion resistance of Fe-18%Mn alloy[J]. Key Engineering Materials,2006,319:73.
[106] GIRISH B M,SATISH B M,MAHESH K.Effect of stacking fault probability and ε martensite on damping capacity of Fe-16%Mn alloy[J]. Materials and Design,2010,31(4):2163.
[107] CHEN L H,LI C R,LI Z Y. Effect of rare earth Ce on martensite structure of Fe-Mn damping alloy[J]. Materials Research Express,2020,6(12):1265i4.
[108] GAVRILJUK V G,YAKOVENKO P G,ULLAKKO K.Influence of nitrogen on vibration damping and mechanical properties of Fe-Mn alloys[J]. Scripta Materialia,1998,38(6):931.
[109] 李中元. Fe-Mn基减振合金阻尼性能的研究[D]. 贵阳:贵州大学,2019.(LI Z Y.Study on Damping Properties of Fe-Mn Based Alloy[D]. Guiyang:Guizhou University,2019.)
[110] 李宁,黄姝珂,滕劲,等. 合金元素对Fe-Mn合金层错几率和阻尼性能的影响[J]. 四川大学学报(工程科学版),2007,39(4):98.(LI N,HUANG Z K,TENG J,et al. Effect of alloy elements on stacking fault probability and damping capacity of Fe-Mn alloy[J]. Journal of Sichuan University(Engineering Science),2007,39(4):98.)
[111] 于学勇,李宁,胥永刚,等. 固溶处理温度对Fe-14Mn-0.22C减振合金阻尼性能的影响[J]. 四川大学学报(工程科学版),2003,35(5):84.(YU X Y,LI N,XU Y G,et al. Effect of solution treatment temperature on the damping capacity of Fe-14Mn-0.22C[J]. Journal of Sichuan University(Engineering Science),2003,35(5):84.)
[112] 王世宏,李健,柴锋,等. 固溶温度对Fe-19Mn合金的γ→ε相变和阻尼性能的影响[J]. 金属学报,2020,56(9):1217.(WANG S H,LI J,CHAI F,et al.Influence of solution temperature on γ→ε transformation and damping capacity of Fe-19Mn alloy[J]. Acta Metallurgica Sinica,2020,56(9):1217.)
[113] 黎为,李宁,滕劲,等. 时效温度对Fe-19Mn合金阻尼性能的影响[J]. 金属热处理,2010(12):67.(LI W,LI N,TENG J,et al. Effect of ageing temperature on damping property of Fe-19Mn alloy[J]. Heat Treatment of Metals,2010(12):67.)
[114] 黄姝珂,李宁,文玉华,等. 等径角挤压对Fe-18.39 Mn合金组织和阻尼性能的影响[J]. 材料热处理学报,2007,28(5):66.(HUANG S K,LI N,WEN Y H,et al. Effect of ECAP on microstructure and damping capacity of Fe-18.39Mn alloy[J]. Transactions of Materials and Heat Treatment,2007,28(5):66.)
[115] XIA B,ZHANG X,MISRA R D K,et al. Significant impact of cold-rolling deformation and annealing on damping capacity of Fe-Mn-Cr alloy[J]. Journal of Iron and Steel Research International,2020,27(5):566.
[116] WANG H,WANG H,ZHANG R,et al.Effect of high strain amplitude and pre-deformation on damping property of Fe-Mn alloy[J]. Journal of Alloy and Compounds,2019,770:252.
[117] 刘洋,柴玉国,杨晓山,等. 一种有效控制高锰钢板坯连铸漏钢的工艺:中国,CN113523215B[P].2021-06-18[2023-07-07].(LIU Y,CHAI Y G,YANG X S,et al. A Process for Effectively Controlling Breakout in Continuous Casting of High Manganese Steel Slab:China,CN113523215B[P]. 2021-06-18[2023-07-07].)
[118] 李建民,石发才,王育田,等. 一种高锰钢的连铸方法:中国,CN102423795B[P].2011-11-25[2013-08-28].(LI J M,SHI F C,WANG Y T,et al. A Continuous Casting Method of High Manganese Steel:China,CN102423795B[P]. 2011-11-25[2013-08-28].)
[119] MA L,WEI Y,HOU L,et al.Microstructure and mechanical properties of TWIP steel joints[J]. Journal of Iron and Steel Research International,2014,21(8):749.
[120] 李辉,江海涛,杨林,等. TWIP钢激光拼焊板的力学性能及微观组织分析[J]. 材料科学与工艺,2014,22(6):6.(LI H,JIANG H T,YANG L,et al.Mechanical properties and microstructure of laser welded TWIP steels[J]. Materials Science and Technology,2014,22(6):6.)
[121] MUJICA L,WEBER S,THOMY C,et al.Microstructure and mechanical properties of laser welded austenitic high manganese steels[J]. Science and Technology of Welding and Joining,2009,14(6):517.
[122] 姜英花,谢春乾,邝霜. 单相组织TWIP钢的扩孔性研究[J]. 材料科学与工艺,2017,25(6):1.(JIANG Y H,XIE C Q,KUANG S. Hole expansion property of TWIP steel with single-phase microstructure[J]. Materials Science and Technology,2017,25(6):1.)
[123] TOFAUTE W,LINDEN K.Transformations in solid state of manganese steels containing to 1.2%C and 17%Mn[J]. Arch Eisenhuttenwesen,1936,10:515.
[124] 徐祖耀. 马氏体相变与马氏体[M]. 北京:科学出版社,1999.(XU Z Y.Martensitic Transformation and Martensite[M]. Beijing:Science Press,1999.)
[125] TANAKA Y,SHIMIZU K.A variation of martensite morphology with manganese and carbon compositions in Fe-Mn-C alloys[J]. Transactions of the Japan Institute of Metals,1980,21:34.
[126] 王明胜,朱延福. 奥氏体中锰钢的形变诱发马氏体[J]. 理化检验(物理分册),1991,27(1):23.(WANG M S,ZHU Y F. Plastic induced martensite transformation of a medium manganese austenitic steel[J]. Physical Testing and Chemical Analysis(Part A:Physical Testing),1991,27(1):23.)
[127] 林会国,傅代直. 钢的奥氏体转变曲线:原理、测试与应用[M]. 北京: 机械工业出版社,1988.(LIN H G,FU D Z.Austenitic Transformation Curve of Steel-Principle,Test and Application[M]. Beijing:China Machine Press,1988.)
PDF(4154 KB)

515

Accesses

0

Citation

Detail

Sections
Recommended

/