Consolidification behavior and reduction characteristics of high-silicon ultrafine magnetite concentrate fluxed pellets

WEN Baoliang, FAN Zihao, LI Jiaxin, LIU Delou, CHONG Junqiang, YANG Jialong

Iron and Steel ›› 2024, Vol. 59 ›› Issue (5) : 33-44.

PDF(8184 KB)
Welcome to visit Iron and Steel, July 30, 2025
PDF(8184 KB)
Iron and Steel ›› 2024, Vol. 59 ›› Issue (5) : 33-44. DOI: 10.13228/j.boyuan.issn0449-749x.20230559
Raw Material and Ironmaking

Consolidification behavior and reduction characteristics of high-silicon ultrafine magnetite concentrate fluxed pellets

Author information +
History +

Abstract

The high proportion of pellets in blast furnace smelting technology is an important solution to reduce carbon emissions and environmental pressures in the ironmaking system. Utilizing high-silicon ultrafine magnetite concentrate as raw material for pellet production helps expand domestic iron ore resources in China and increase the application of low-grade ores. The influence of basicity on the pelletization and reduction characteristics of high-silicon ultrafine magnetite concentrate pellets was systematically studied. Thermodynamic calculations, mineral phase analysis, scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), and other methods were used to investigate their pelletization behavior and reduction characteristics. The research results show that with the increase of basicity, the compressive strength of high-silicon ultrafine magnetite concentrate pellets first increases and then decreases, while the porosity first decreases and then increases. Within the basicity range of 0.06 to 0.73, the compressive strength of the pellets exceeds 4 000 N/pellet. The highest compressive strength and lowest porosity of the pellets are achieved at an basicity of 0.24. Increasing basicity reduces the content of silica dioxide phase in the high-silicon ultrafine magnetite concentrate pellets and promotes the formation of calcium iron phase and silicate phase. Under the conditions of basicity of 1.20 and temperature of 1 300 ℃, the liquid phase proportion in the pellets can reach 24.38%. When the basicity is greater than 0.73, the amount of liquid phase in the pellets rapidly increases after 1 250 ℃. With increasing basicity, the calcium content in the slag phase and silicate phase of the high-silicon ultrafine magnetite concentrate pellets gradually increases. Additionally, higher basicity leads to a more polygonal structure of hematite grains and more filling of slag phase between grains. With increasing basicity, the reduction degree and reduction swelling rate of the high-silicon ultrafine magnetite concentrate pellets first decrease and then increase, and the anti-reduction pulverization performance of the pellets weakens. After an basicity of 0.24, the increased porosity and calcium iron phase content in the pellets facilitate the diffusion of reducing gases inside the pellets and promote reduction reactions, effectively improving the reduction degree of the pellets. The reduction degree of the pellets at an basicity of 1.20 is 34.9% higher than at an basicity of 0.06.

Key words

high-silicon ultrafine magnetite concentrate / fluxed pellets / basicity / cold crushing strength / consolidation behavior / reduction characteristics

Cite this article

Download Citations
WEN Baoliang, FAN Zihao, LI Jiaxin, et al. Consolidification behavior and reduction characteristics of high-silicon ultrafine magnetite concentrate fluxed pellets[J]. Iron and Steel, 2024, 59(5): 33-44 https://doi.org/10.13228/j.boyuan.issn0449-749x.20230559

References

[1] 王秋林. 复杂微细粒镜铁矿强磁-脱泥-反浮选试验研究[J]. 矿产综合利用,2011,32(5):15.(WANG Q L.Experimental research on high-intensity magnetic separation-desliming—Reverse flotation of a complex and micro-fine specularite ore[J]. Multipurpose Utilization of Mineral Resources,2011,32(5):15.)
[2] 韩跃新,孙永升,李艳军,等. 我国铁矿选矿技术最新进展[J]. 金属矿山,2015,44(2):1.(HAN Y X,SUN Y S,LI Y J,et al. New development on mineral processing technology of iron ore resources in China[J]. Metal Mine,2015,44(2):1.)
[3] 胡义明,韩跃新. 袁家村铁矿氧化矿石可选性研究[J]. 金属矿山,2012,41(10):65.(HU Y M,HAN Y X. Study on the separation of the oxidized ore from Yuanjiacun iron mine[J]. Metal Mine,2012,41(10):65.)
[4] 刘志兴. SA-2絮凝剂在微细粒赤铁矿分选中的应用[J]. 有色金属(选矿部分),2013,34(6):83.(LIU Z X. Application of SA-2 flocculant in the separation of fine-grained hematite[J]. Nonferrous Metals (Mieral Processing Section),2013,34(6):83.)
[5] ZHANG Y, CHEN X, SU Z, et al.Improving properties of fluxed iron ore pellets with high-silica by regulating liquid phase[J]. Journal of Iron and Steel Research International,2022,29(9):1381.
[6] 于洪军,路明,王兴锋,等. 铁矿粉粒度组成对球团矿性能影响的研究进展[J]. 冶金能源,2022,41(1):21.(YU H J,LU M,WANG X F,et al. Research progress on the effect of iron fine particle size on pellet properties[J]. Energy for Metallurgical Industry,2022,41(1):21.)
[7] 贺淑珍,冯焕林,甘敏,等. 超细铁精矿粉特性对烧结的影响[J]. 钢铁研究学报,2015,27(4):6.(HE S Z,FENG H L,GAN M,et al. Effects of characters of ultra fine iron ore concentrate on sinter[J]. Journal of Iron and Steel Research,2015,27(4):6.)
[8] 李亚飞,杨涛,刘在春,等. 高压辊磨对含硫酸渣超细铁精粉生球性能的影响[J]. 钢铁研究学报,2022,34(7):639.(LI Y F,YANG T,LIU Z C,et al. Effect of high pressure roller grinding on the green pellets properties of ultra-fine iron concentrate containing pyrite cinder[J]. Journal of Iron and Steel Research,2022,34(7):639.)
[9] 温宝良,张晓萍,刘德楼,等. 含硼磁铁矿对超细粒级磁铁矿球团矿性能的影响[J]. 钢铁,2022,57(11):33.(WEN B L,ZHANG X P,LIU D L,et al. Effect of boron-containing magnetite on properties of ultrafine-grained magnetite pellets[J]. Iron and Steel,2022,57(11):33.)
[10] 朱德庆,徐梦杰,潘建,等. 改善超细铁精矿成球性能的实验研究[J]. 钢铁研究学报,2017,29(9):704.(ZHU D Q,XU M J,PAN J,et al. Experimental research to improve pelletsability of ultrafine concentrate[J]. Journal of Iron and Steel Research,2017,29(9):704.)
[11] 潘建,田宏宇,朱德庆,等. 超微细铁精矿的粒度特性和润湿性对其成球性能的交互影响[J]. 工程科学学报,2017,39(6):830.(PAN J,TIAN H Y,ZHU D Q,et al. Particle size and wettability effect of ultrafine magnetite concentrate on ballability[J]. Chinese Journal of Engineering,2017,39(6):830.)
[12] WONG G, FAN X, GAN M, et al.Improvement on the thermal cracking performance of pellets prepared from ultrafine iron ore[J]. Powder Technology, 2019,342(8):873.
[13] YANG C, ZHU D, PAN J, et al.Oxidation and induration characteristics of pellets made from Western Australian ultrafine magnetite concentrates and its utilization strategy[J]. Journal of Iron and Steel Research International, 2016,23(9):924.
[14] UMADEVI T, KUMAR M S, KUMAR S, et al.Influence of raw material particle size on quality of pellets[J]. Ironmaking and Steelmaking, 2008,35(5):327.
[15] FAN X, ZHOU Z, WANG S, et al.Mineralization characteristics of pellets prepared by ultrafine magnetite concentrate: Influence on metallurgical property and improving method[J]. Journal of Iron and Steel Research International, 2023, 30(3): 446.
[16] BAI K, LIU L, PAN Y, et al.A review: Research progress of flux pellets and their application in China[J]. Ironmaking and Steelmaking, 2021,48(9):1048.
[17] 王新东,金永龙. “双碳”背景下高炉使用高比例球团矿的展望[J]. 过程工程学报,2022,22(10):1379. (WANG X D,JIN Y L.Prospect on high ratio pellet utilized in blast furnace under the background of carbon peaking and carbon neutrality[J]. The Chinese Journal of Process Engineering,2022,22(10):1379.)
[18] 从俊强,温宝良,李家新,等. 消石灰对细粒级铁精矿球团矿性能的影响[J]. 钢铁,2023,58(5):20.(CONG J Q,WEN B L,LI J X,et al. Effect of lime hydrate on the pellet properties of fine-grained iron ore concentrates[J]. Iron and Steel,2023,58(5):20)
[19] BAI K, CHEN W, PAN Y.Consolidation behaviors of magnesium acid pellet produced by serpentine and high-silicon iron ore concentrate[J]. JOM, 2023,75(5):1450.
[20] UMADEVI T, KUMAR P, LOBO N F, et al.Influence of pellet basicity (CaO/SiO2) on iron ore pellet properties and microstructure[J]. ISIJ International, 2011,51(1):14.
[21] LI J, AN H, LIU W, et al.Effect of basicity on metallurgical properties of magnesium fluxed pellets[J]. Journal of Iron and Steel Research International, 2020,27(1):239.
[22] 温宝良,张晓萍,李家新,等. 细粒级铁精矿制备熔剂性球团[J]. 钢铁,2023,58(10): 23.(WEN B L,ZHANG X P,LI J X,et al. Preparation of fusible pellets from fine-grained iron ore concentrates[J]. Iron and Steel,2023,58(10):23)
[23] 徐子轩,姜鑫,何佳,等. 钙质熔剂对熔剂性球团矿强度的影响[J]. 中国冶金,2023,33(9):11.(XU Z X,JIANG X,HE J,et al. Effects of calcium flux on fluxed pellets strength[J]. China Metallurgy,2023,33(9):11)
[24] 王兴锋,李铁柱,孙孝东,等. 大孤山球团厂回转窑结圈机制与抑制措施研究[J]. 冶金能源,2022,41(6):45.(WANG X F,LI T Z,SUN X D,et al. Study on the intrinsic relationship between pellet ore properties and mineral phases of rotary kiln nodules[J]. Energy for Metallurgical Industry,2022,41(6):45)
[25] UMADEVI T, KUMAR A, KARTHIK P, et al.Characterisation studies on swelling behaviour of iron ore pellets[J]. Ironmaking and Steelmaking, 2018,45(2):157.
[26] 李卓,宗燕兵,张建良,等. 高硅镁质熔剂性球团还原历程及冶金性能分析[J]. 钢铁,2023,58(3):34.(LI Z,ZONG Y B,ZHANG J L,et al. Reduction process and metallurgical properties analysis of high silicon magnesia flux pellets[J]. Iron and Steel,2023,58(3):34)
[27] GUO Y, LIU K, CHEN F, et al.Effect of basicity on the reduction swelling behavior and mechanism of limestone fluxed iron ore pellets[J]. Powder Technology, 2021,393(7):291.
[28] 赵路遥,田筠清,赵满祥,等. 球团矿还原膨胀率影响因素分析[J]. 中国冶金,2023,33(10):60.(ZHAO L Y,TIAN J Q,ZHAO M X,et al. Analysis on influencing factors of reduction swelling index of pellets[J]. China Metallurgy,2023,33(10):60)
[29] 柴轶凡,樊莹杰,高兴,等. 碱度对白云鄂博矿球团矿还原膨胀性能的影响[J]. 钢铁,2023,58(1):13.(CHAI Y F,FAN Y J,GAO X,et al. Influence of basicity on reduction swelling properties of pellets prepared from Bayan Obo iron ore[J]. Iron and Steel,2023,58(1):13)
[30] KAWATRA S K, CLAREMBOUX V.Iron ore pelletization: Part I. Fundamentals[J]. Mineral Processing and Extractive Metallurgy Review, 2022,43(4):529.
PDF(8184 KB)

80

Accesses

0

Citation

Detail

Sections
Recommended

/