Research progress on collaborative utilization of organic solid waste in iron and steel processes

PENG Cheng, LONG Hongming, FAN Chunlong, DING Long, QIAN Lixin, WU Zhengyi, YE Chengkang

Iron and Steel ›› 2024, Vol. 59 ›› Issue (8) : 1-12.

PDF(4353 KB)
Welcome to visit Iron and Steel, July 31, 2025
PDF(4353 KB)
Iron and Steel ›› 2024, Vol. 59 ›› Issue (8) : 1-12. DOI: 10.13228/j.boyuan.issn0449-749x.20230677
Technical Reviews

Research progress on collaborative utilization of organic solid waste in iron and steel processes

Author information +
History +

Abstract

The collaborative utilization of organic solid waste in the steel process has natural advantages. High temperature conditions and a complete pollutant treatment system in the process are conducive to the harmless disposal of organic solid waste. Futhermore, there is no possibility of them casusing secondary pollution to the environment. Organic solid waste is used as fuel to replace fossil energy, which not only cuts steel production costs but also reduces CO2 emissions, turning waste into treasure. The collaborative utilization of organic solid waste in the steel process achieves multiple benefits such as green sustainable development and ecological environment protection, and meets the actual development needs of steel companies. The research progress of organic solid waste disposal in steel processes, and outlines the current utilization status and technical bottlenecks of organic solid waste in iron ore sintering, blast furnace ironmaking, rotary hearth furnace, electric arc furnace steelmaking and other steel production processes were summarized. Combining the advantages and characteristics of the rotary hearth furnace technology in the field of solid waste, the author proposes a new multi-kiln integrated organic solid waste treatment technology centered on the rotary hearth furnace, specifically including the organic solid waste heat transfer system, the rotary hearth furnace system, and the conversion pyrolysis furnace system and flue gas control system. The system uses a pyrolysis gasification furnace to pyrolyze organic solid waste to produce combustible gas and pyrolysis carbon. Combustible gas is used to replace natural gas to provide energy for the rotary hearth furnace. Pyrolytic carbon can replace coke powder, coal powder and iron and zinc dust sludge to prepare carbon-containing pellets, and obtain valuable metal dust and metallized pellets under rotary hearth furnace smelting conditions. After the valuable metal dust is enriched, high value-added metals such as zinc ingots, lead ingots, and indium ingots are obtained through a combined fire-wet process. Metalized pellets are produced through a hydrogen plasma melting pyrolysis furnace to produce molten iron. The flue gas of the entire process is concentrated in the rotary hearth furnace flue gas treatment system to achieve ultra-low pollutant emissions, which provides a new idea for the coordinated treatment of urban organic solid waste in the steel process.

Key words

furnace / organic solid waste / rotary hearth furnace / collaborative disposal / carbon emission reduction

Cite this article

Download Citations
PENG Cheng, LONG Hongming, FAN Chunlong, et al. Research progress on collaborative utilization of organic solid waste in iron and steel processes[J]. Iron and Steel, 2024, 59(8): 1-12 https://doi.org/10.13228/j.boyuan.issn0449-749x.20230677

References

[1] 李龙涛,李万明,孙继民,等. 城乡有机废弃物资源化利用现状及展望[J]. 农业资源与环境学报,2019,36(3):264.(LI L T,LI W M,SUN J M,et al. Research status and prospects of the resource utilization of organic waste in urban and rural areas[J]. Journal of Agricultural Resources and Environment,2019,36(3):264.)
[2] 龙红明,丁龙,赵贺喜,等. 典型钢铁生产流程烟气中CO减排研究进展[J]. 钢铁,2023,58(8):1.(LONG H M,DING L,ZHAO H X,et al. Research progress and development trend of CO removal in typical steel production process[J]. Iron and Steel,2023,58(8):1.)
[3] FAN X H,WONG G J,GAN M,et al.Establishment of refined sintering flue gas recirculation patterns for gas pollutant reduction and waste heat recycling[J]. Journal of Cleaner Production,2019,235:1549.
[4] 王海风,郦秀萍,周继程,等. 钢铁工业节能技术发展现状及趋势[J]. 冶金能源,2018,37(4):3.(WANG H F,LI X P, ZHOU J C,et al. Status and development trend of energy saving technology of chinese steel industry[J]. Energy for Metallurgical Industry,2018,37(4):3.)
[5] 龙红明,魏汝飞,李宁,等. 高炉炼铁协同处理城市可燃固废[J]. 钢铁,2018,53(3):1.(LONG H M,WEI R F,LI N,et al. Disposal of city combustible solid waste by blast furnace[J]. Iron and Steel,2018,53(3):1.)
[6] 叶恒棣,李谦,魏进超,等. 钢铁炉窑协同处置冶金及市政难处理固废技术路线[J]. 钢铁,2021,56(11):141.(YE H D,LI Q,WEI J C,et al. Technology route research of metallurgical and urban solid waste co-processing using steel industrial furnace[J]. Iron and Steel,2021,56(11):141.)
[7] 龙红明,丁龙,陶家杰,等. 烧结烟气脱硝废弃钒钨钛催化剂资源化利用途径分析[J]. 钢铁,2022,57(7):162.(LONG H M,DING L,TAO J J,et al. Analysis on resource utilization of spent V2O5-WO3/TiO2 catalyst produced in sintering flue gas[J]. Iron and Steel,2022,57(7):162.)
[8] 林文龙,张玉柱,刘超,等. 烧结烟气污染物治理工艺研究进展[J]. 环境工程,2023,41(6):248.(LIN W L,ZHANG Y Z,LIU C,et al. Advances in research on sintering flue gas pollutants′ treatment processes[J]. Environmental Engineering,2023,41(6):248.)
[9] 康建刚,杨本涛,魏进超,等. 铁矿烧结减污降碳及协同处置固废新技术[J]. 烧结球团,2023,48(3):20.(KANG J G,YANG B T,WEI J C,et al. New technology on reduction of pollution and carbon emissions and collaborative disposal of solid wastes in iron ore sintering[J]. Sintering and Pelletizing,2023,48(3):20.)
[10] LIU Y C,WANG Z M,CHEN M Y,et al.Preparation of sintered brick from thermal desorption residue of oily sludge and analysis of environmental performance[J]. Construction and Building Materials,2023,376:130923.
[11] 叶恒棣,蔡飞翔,丁成义,等. 热解与烧结协同处置富碳有机固废的新工艺[J]. 烧结球团,2022,47(6):49.(YE H D,CAI F X,DING C Y,et al. A new process of co-processing carbon-rich organic solid waste with pyrolysis and sintering[J]. Sintering and Pelletizing,2022,47(6):49.)
[12] HAN J,HUANG Z H,QIN L B,et al.Refused derived fuel from municipal solid waste used as an alternative fuel during the iron ore sinter process[J]. Journal of Cleaner Production,2021,278:123594.
[13] WEI R F,ZHANG L L,CANG D Q,et al.Current status and potential of biomass utilization in ferrous metallurgical industry[J]. Renewable and Sustainable Energy Reviews,2017,68:511.
[14] 甘敏,李浩锐,范晓慧,等. 果核生物质炭燃烧特性及其应用于烧结的减排行为[J]. 烧结球团,2022,47(1):65.(GAN M,LI H R,FAN X H,et al. Combustion characteristics of kernel biomass char and its emission reduction behavior applied to sintering[J]. Sintering and Pelletizing,2022,47(1):65.)
[15] 罗晔,吴瑾,王超. 韩国钢铁工业的固体废弃物回收再利用[J]. 中国冶金, 2017, 27(10): 76.(LUO Y,WU J,WANG C. Recovery and reuse of solid waste in South Korean iron and steel industry[J]. China Metallurgy, 2017, 27(10): 76.)
[16] 王捷. 城市污泥和铁矿石混合烧结研究[D]. 长沙:中南大学,2022.
(WANG J.Study of Sintering of Mixture of Municipal Sludge and Iron Ore[D]. Changsha:Central South University,2022.)
[17] 王小青. 污水处理厂污泥冶金烧结行为研究[D]. 重庆:重庆大学,2017.
(WANG X Q.Study on Performance of Sewage Sludge in the Metallurgical Sintering Process[D]. Chongqing:Chongqing University,2017.)
[18] 叶恒棣,李谦,魏进超,等. 高温工业窑炉协同处置多源固废的适配性探讨[C]//2022环境工程技术创新与应用分会场论文集. 南昌:中国环境科学学会环境工程分会,2022:413.(YE H D,LI Q,WEI J C,et al. Discussion of matching laws between high-temperature industrial furnace and multi-source solid waste[C]//Proceedings of the 2022 Environmental Engineering Technology Innovation and Application Conference. Nanchang:Environmental Engineering Branch, Chinese Society of Environmental Sciences,2022:413.)
[19] 郑锡瀚,陈铁军,潘料庭,等. 长流程不锈钢企业高温炉窑协同处置危废工艺设想[J]. 烧结球团,2022,47(6):16.(ZHENG X H,CHEN T J,PAN L T,et al. Scenarios for co-processing hazardous waste process of high-temperature furnaces for long-flow stainless steel enterprises[J]. Sintering and Pelletizing,2022,47(6):16.)
[20] BABICH A,SENK D,KNEPPER M,et al.Conversion of injected waste plastics in blast furnace[J]. Ironmaking Steelmaking,2016,43(1):11.
[21] TANG H Q,MA L Q,LIU Z,et al.Retraction note: Charging biochar composite briquette in blast furnace for reducing CO2 emissions: Combined numerical and experimental investigations[J]. Metallurgical and Materials Transactions,2023,54(4):2274.
[22] ELSAYED M,KURT S.Modeling and optimization of biochar injection into blast furnace to mitigate the fossil CO2 emission[J]. Sustainability,2022,14(4):2393.
[23] 熊玮,王国强,周绍轩. 秸秆替代煤高炉喷吹的能源消耗及环境影响比较[J]. 环境科学与技术,2013,36(4):137.(XIONG W,WANG G Q,ZHOU S X. Comparison of energy consumption and environmental impact of replacement of coal with straw injection into blast furnace[J]. Environmental Science and Technology,2013,36(4):137.)
[24] FREDERICO C,ALBERTO S,SANTOS A,et al.Experimental simulation and analysis of agricultural waste injection as an alternative fuel for blast furnace[J]. Energy Fuels,2014,28(11/12):7268.
[25] 李冲. 花生壳生物炭用作高炉喷吹燃料的实验研究[D]. 武汉:武汉科技大学,2018.
(LI C.Experimental Research of Peanut Shell Biomass Charcoal for Blast Furnace Fuel Injection[D]. Wuhan:Wuhan University of Science and Technology,2018.)
[26] 刘竹林,蒋友源,寿擎,等. 高炉混合喷吹用生物质燃料可磨性及燃烧性能分析[J]. 中国冶金,2020,30(3):8.(LIU Z L,JIANG Y Y,SHOU Q,et al. Analysis on grindability and combustion performance of biomass fuel for mixed injection of blast furnace[J]. China Metallurgy,2020,30(3):8.)
[27] 孟康政,魏汝飞,徐春保. 生物质在钢铁冶金中的应用现状及前景[J]. 安徽工业大学学报(自然科学版),2023,40(3):250.(MENG K Z,WEI R F,XU C B. Application status and prospect of biomass in steel metallurgy[J]. Journal of Anhui University of Technology(Natural Science),2023,40(3):250.)
[28] 郑伟成,徐春保,魏汝飞,等. 高炉喷吹生物炭研究进展[J]. 钢铁研究学报,2021,33(1):1.(ZHENG W C,XU C C,WEI R F,et al. Injection of biochar into blast furnace: Progress and prospects[J]. Journal of Iron and Steel Research,2021,33(1):1.)
[29] 张淑会,邵建男,兰臣臣,等. 生物质能在炼铁领域应用的研究现状及展望[J]. 钢铁,2022,57(12):13.(ZHANG S H,SHAO J N,LAN C C,et al. Application status and prospect of biomass energy in ironmaking process[J]. Iron and Steel,2022,57(12):13.)
[30] KIM D,SHIN S,SOHN S,et al.Waste plastics as supplemental fuel in the blast furnace process: Improving combustion efficiencies[J]. Journal of Hazardous Materials,2002,94(3):213.
[31] GOTO A,MOROZUMI Y,HAGIYA H,et al.Numerical investigation of waste plastic injection in a blast furnace[J]. Journal of Chemical Engineering of Japan,2008,41(3):182.
[32] 邢相栋,王莎,张秋利,等. 高炉喷吹废塑料与兰炭混合燃烧及动力学[J]. 钢铁研究学报,2019,31(3):258.(XING X D,WANG S,ZHANG Q L,et al. Mixed combustion and kinetics of waste plastics injected into blast furnace and anthracite[J]. Journal of Iron and Steel Research,2019,31(3):258.)
[33] 宁晓钧,滕海鹏,王广伟,等. 废塑料水热炭高炉喷吹基础性能分析[J]. 钢铁,2020,55(8):123.(NING X J,TENG H P,WANG G W,et al. Basic analysis of waste plastic hydrochars injection for blast furnace[J]. Iron and Steel,2020,55(8):123.)
[34] WANG G W,LI D S,XIONG L,et al.Application of catalysts in biomass hydrothermal carbonization for the preparation of high-quality blast furnace injection fuel[J]. Energy,2023,283:129147.
[35] 杨涛,刘爽,钱立新,等. 废塑料在钢铁生产流程中资源化利用研究进展[J]. 钢铁研究学报,2022,34(10):1047.
(YANG T,LIU S,QIAN L X,et al.Recycling waste plastics in iron and steel production process: A review[J]. Journal of Iron and Steel Research,2022,34(10):1047.)
[36] 任山,龙世刚. 三种可燃固体废弃物及煤粉的热重分析[J]. 安徽工业大学学报(自然科学版),2009,26(3):229.(REN S,LONG S G. Investigation on thermogravimetric characteristic of several commom refuse derived fuel and coal powder[J]. Journal of Anhui University of Technology(Natural Science),2009,26(3):229.)
[37] LI X G,MA B G,XU L,et al.Thermogravimetric analysis of the co-combustion of the blends with high ash coal and waste tyres[J]. Thermochimica Acta,2006,441(1):79.
[38] 郁庆瑶,龙世刚,林成城,等. 高炉喷吹废轮胎的展望[J]. 世界钢铁,2012,12(5):1.(YU Q Y,LONG S G,LIN C C,et al. Prospect on injecting waste tires into blast furance[J]. World Iron and Steel,2012,12(5):1.)
[39] 任山,郁庆瑶,龙世刚. 高炉喷吹废轮胎的可行性分析[J]. 中国冶金,2008,18(6):40.(REN S,YU Q Y,LONG S G. Analysis of feasibility for injecting used tyres into blast furnace[J]. China Metallurgy,2008,18(6):40.)
[40] QIN L B,FANG J Y,ZHU S Q,et al.Municipal solid waste gasification by hot recycling blast furnace gas coupled with in-situ decarburization to prepare blast furnace injection of hydrogen-rich gas[J]. Waste Management,2024,174:153.
[41] 余海钊,廖继勇,范晓慧. 带式焙烧机球团技术的应用及研究进展[J]. 烧结球团,2020,45(4):47.(YU H Z,LIAO J Y,FAN X H. Application and research progress of pelletizing technology of belt roaster[J]. Sintering and Pelletizing,2020,45(4):47.)
[42] CAO Y,SUN Y S,GAO P,et al.Mechanism for suspension magnetization roasting of iron ore using straw-type biomass reductant[J]. International Journal of Mining Science and Technology,2021,31(6):1075.
[43] 家丽非,于震宇,周密,等.回转窑协同处置技术研究现状[C]//2021第十一届全国能源与热工学术年会论文集. 马鞍山:中国金属学会能源与热工分会,2021:194.(JIA L F,YU Z Y,ZHOU M,et al. Research status of rotary kiln collaborative treatment technology[C]//Proceedings of the 11th National Energy and Thermal Industry Annual Conference 2021. Maanshan:Energy and Thermal Engineering Branch, Chinese Society of Metals,2021:194.)
[44] LEEVHAN T,HUNG M,CHUEN O,et al.Overview of municipal solid wastes-derived refuse-derived fuels for cement co-processing[J]. Alexandria Engineering Journal,2023,84:153.
[45] 马蒸钊. 含油污泥回转窑热固载体热解特性研究[D]. 大连:大连理工大学,2015.
(MA Z Z.Study on Pyrolysis Characteristic of Oily Sludge in the Rotary Kiln with Solid Heat Carrier[D]. Dalian:Dalian University of Technology,2015.)
[46] 王广伟,刘嘉雯,李仁国,等. 回转窑处理固体废弃物的研究进展[J]. 中国冶金,2023,33(10):1.(WANG G W,LIU J W,LI R G,et al. Research progress of solid waste treatment in rotary kilns[J]. China Metallurgy,2023,33(10):1.)
[47] 杨祝英,左欢,李敬. 焦炭与废塑料共混对电炉炼钢渣中FeO还原作用的探究[J]. 塑料科技,2020,48(3):61.(YANG Z Y,ZUO H,LI J. Reduction of FeO in EAF steel making slag by metallurgical coke and waste plastics blends[J]. Plastics Science and Technology,2020,48(3):61.)
[48] WANG J H,FANG Q,JIA J,et al.Melting mechanism of steel scrap in a converter with combined blowing[J]. Journal of Materials Research and Technology,2023,27:7047.
[49] 沈昶,郭俊波,陆强. 跨行业工业危废用于炼钢精炼的绿色工艺实践[J]. 安徽工业大学学报(自然科学版),2023,40(3):269.(SHEN C,GUO J B,LU Q. Green process practice of cross industry hazardous wastes applied in steelmaking and refining[J]. Journal of Anhui University of Technology(Natural Science), 2023, 40(3):269.)
[50] 包向军,周剑波,陈光. 废塑料炼钢造渣剂的制备工艺[J]. 冶金能源,2016,35(2):38.(BAO X J,ZHOU J B,CHEN G. Technology of slag-making pellet for steel-making by waste plastic[J]. Energy for Metallurgical Industry,2016,35(2):38.)
[51] ZHOU J N,SONG W M,LI Y J,et al.High-quality syngas production: The green and efficient utilization of waste tire and waste heat from the steelmaking converter process[J]. Waste Management,2021,131:98.
[52] 王建斌,高宠光,郭小龙,等. 转炉处理含油固体废弃物的工艺与应用[J]. 河北冶金,2015(6):75.(WANG J B,GAO C G,GUO X L,et al. Process to treat oil-bearing solid waste with converter and its application[J]. Hebei Metallurgy,2015(6):75.)
[53] 龙红明,丁龙,钱立新,等. 烧结烟气中NOx和二噁英的减排现状及发展趋势[J]. 化工进展,2022,41(7):3865.
(LONG H M,DING L,QIAN L X,et al.Current situation and development trend of NOx and dioxins emission reduction in sintering flue gas[J]. Chemical Industry and Engineering Progress,2022,41(7):3865.)
[54] LI C Q,LIU G R,QIN S,et al.Emission reduction of PCDD/Fs by flue gas recirculation and activated carbon in the iron ore sintering[J]. Environmental Pollution,2023,327:121520.
[55] 张玉才,龙红明,春铁军,等. 原料铜和氯元素对二噁英排放的影响及抑制技术[J]. 钢铁,2015,50(12):42.(ZHANG Y C,LONG H M,CHUN T J,et al. Influences of Cu and Cl elements from raw materials on the emission of PCDD/Fs and its emissionreduction technology[J]. Iron and Steel,2015,50(12):42.)
[56] LONG H M,LI J X,WANG P.Influence of dioxin reduction on chemical composition of sintering exhaust gas with adding urea[J]. Journal of Central South University,2012,19(5):1359.
[57] LONG H M,LI J X,WANG P,et al.Emission reduction of dioxin in iron ore sintering by adding urea as inhibitor[J]. Ironmaking Steelmaking,2013,38(4):258.
[58] WU Y L,JIANG Z Y,ZHANG X X,et al.Process optimization of metallurgical dust recycling by direct reduction in rotary hearth furnace[J]. Powder Technology,2018,326:101.
[59] 孟庆民,龙红明,春铁军,等. 添加废塑料对含碳压块热成型和焙烧还原的影响[C]//2019第十二届中国钢铁年会论文集. 北京:中国金属学会,2019:410.(MENG Q M,LONG H M,CHUN T J,et al. Waste plastic addition on the thermoforming and roasting reduction of carbon-bearing iron ore briquette[C]//Proceedings of the 12th China Iron and Steel Annual Conference 2019. Beijing:Chinese Society of Metals,2019:410.)
[60] LI D,LEI S J,WANG P,et al.Study on the pyrolysis behaviors of mixed waste plastics[J]. Renewable Energy,2021,173:662.
[61] 董剑豪,王广,张浩,等. 塑料-无烟煤混合还原剂对含碳球团还原的影响[J]. 中国冶金,2021,31(2):90.(DONG J H,WANG G,ZHANG H,et al. Effect of plastic-anthracite mixed reducing agent on reduction of carbon-bearing pellets[J]. China Metallurgy,2021,31(2):90.)
[62] 陈伟鹏,谢智辉,张欢,等. 内配废塑料对含碳球团直接还原的影响[J]. 钢铁研究学报,2015,27(10):11.(CHEN W P,XIE Z H,ZHANG H,et al. Effect of plastic addition on direct reduction of carbon-containing pellets[J]. Journal of Iron and Steel Research,2015,27(10):11.)
[63] WU J L,WU S L,AN G,et al.Study on direct reduction in carbon-bearing pellets using biochar[J]. Sustainability,2023,15(24):16554.
[64] 韩宏亮,苑鹏,段东平,等. 生物质用于转底炉直接还原工艺研究[J]. 重庆大学学报(自然科学版),2015,38(5):164.(HAN H L,YUAN P,DUAN D P,et al. Application of biomass to the RHF direct reduction process[J]. Journal of Chongqing University(Natural Science),2015,38(5):164.)
[65] 苑鹏,岳昌盛,韩宏亮,等. 生物质还原剂对转底炉直接还原工艺的影响[J]. 环境工程,2015,33(9):113.(YUAN P,YUE C S,HAN H L,et al. Impact of biomass reducing agents on RHF direct reduction process[J]. Environmental Engineering,2015,33(9):113.)
[66] YUAN P,SHEN B X,DUAN D P,et al.Study on the formation of direct reduced iron by using biomass as reductants of carbon containing pellets in RHF process[J]. Energy,2017,141:472.
[67] 李大伟,岳昌盛,韩宏亮,等. 以秸秆纤维废弃物为还原剂生产金属化球团[J]. 环境工程,2016,34(2):119.(LI D W,YUE C S,HAN H L,et al. Application of straw fiber as the reducing agent in production of metallic pellets[J]. Environmental Engineering,2016,34(2):119.)
[68] 易凌云,黄柱成,姜涛,等. 生物质炭用于铁精矿球团还原过程中黏结的抑制[J]. 中南大学学报(自然科学版),2017,48(12):3141.
(YI L Y,HUANG Z C,JIANG T,et al.Application of charcoal in iron ore pellets sticking prevention during reduction process[J]. Journal of Central South University(Natural Science),2017,48(12):3141.)
PDF(4353 KB)

81

Accesses

0

Citation

Detail

Sections
Recommended

/