Feasibility analysis of hydrogen reduction-titanium-rich separation of low-grade titanium magnetite

TONG Shuai, AI Liqun, HONG Lukuo, ZHANG Shuai, YUAN Zhipeng, SUN Caijiao, CHEN Jiansong

Iron and Steel ›› 2024, Vol. 59 ›› Issue (10) : 32-38.

PDF(8106 KB)
Welcome to visit Iron and Steel, July 23, 2025
PDF(8106 KB)
Iron and Steel ›› 2024, Vol. 59 ›› Issue (10) : 32-38. DOI: 10.13228/j.boyuan.issn0449-749x.20240029
Raw Material and Ironmaking

Feasibility analysis of hydrogen reduction-titanium-rich separation of low-grade titanium magnetite

Author information +
History +

Abstract

Vanadium-titanium magnetite is a characteristic mineral resource rich in iron, vanadium and titanium, which has high comprehensive utilization value. Due to isomorphism and micro-particle embedding, it is difficult to achieve efficient separation and comprehensive utilization of iron and titanium. Based on the mineralogical characteristics and thermodynamic calculation of vanadium-titanium magnetite, a new method of "hydrogen reduction-titanium-rich separation" is proposed to realize titanium-iron separation. Through asynchronous reduction of iron oxide and titanium-iron oxide, iron oxide is transformed into metal Fe, while titanium-iron oxide is basically not reduced, and iron minerals and ilmenite are separated efficiently due to obvious magnetic differences. Under the experimental conditions, with the increase of reduction temperature and time, the recovery rate of titanium decreases and the recovery rate of iron increases. The high reduction temperature and long reduction time are not conducive to the simultaneous separation of ferrotitanium and titanium. Under the conditions of reduction temperature of 900 ℃, reduction time of 50 min, reduction atmosphere of 30%H2+70%Ar(volume percent), and magnetic field intensity inductance of 0.8 A, iron concentrate with TFe grade of 78.32% and recovery of 98.12% and titanium-rich ore with Ti grade of 20.92% and recovery of 33.11% can be obtained. The results of chemical composition analysis, X-ray diffraction (XRD) analysis and optical microscope analysis all show that ilmenite is effectively separated from iron minerals,titanium is effectively enriched in perovskite-rich ore. Finally, the comprehensive utilization of magnetic separation products is prospected. On the one hand, iron concentrate can be produced by blast furnace or direct reduction process to provide raw materials, which can not only reduce production cost and iron loss, but also shorten smelting cycle. On the other hand, high value-added FeTi30 alloy can be prepared from titanium-rich ore, and the theoretical calculation meets the requirements. This provides an important research direction for realizing the comprehensive utilization of products after hydrogen reduction-titanium-rich separation treatment of vanadium-titanium magnetite resources.

Key words

vanadium-titanium magnetite / hydrogen reduction-titanium-rich separation / asynchronous restore / separation of titanium and iron / FeTi30 alloy

Cite this article

Download Citations
TONG Shuai, AI Liqun, HONG Lukuo, et al. Feasibility analysis of hydrogen reduction-titanium-rich separation of low-grade titanium magnetite[J]. Iron and Steel, 2024, 59(10): 32-38 https://doi.org/10.13228/j.boyuan.issn0449-749x.20240029

References

[1] ZHOU L H, ZENG F H.Reduction mechanisms of vanadium-titanomagnetite-non-coking coal mixed pellet[J]. Ironmaking Steelmaking, 2014, 38(1):59.
[2] LÜ X W, LUN Z G, YIN J Q, et al.Carbothermic reduction of vanadium titanomagnetite by microwave irradiation and smelting behavior[J]. ISIJ International, 2013, 53(7):1115.
[3] GUAN X R, CHEN Q, QU S J, et al.Atic shear instability in a titanium alloy: Extreme deformation-induced phase transformation, nanotwinning, and grain refinement[J]. Journal of Materials Science and Technology, 2023, 150:104.
[4] 王新宇, 赵海泉, 齐渊洪, 等. 钒钛磁铁矿直接还原的研究与发展[J].中国冶金, 2024, 34(2): 1.(WANG X Y, ZHAO H Q, QI Y H, et al. Research and development of direct reduction of vanadium-titanium magnetite[J]. China Metallurgy, 2024, 34(2): 1.)
[5] 杨耀辉, 惠博, 颜世强, 等. 全球钒钛磁铁矿资源概况与综合利用研究进展[J]. 矿产综合利用, 2023(4):1.(YANG Y H, HUI B, YAN S Q, et al. General situation of global vanadium-titanium magnetite resources and research progress of comprehensive utilization[J]. Comprehensive utilization of minerals, 2023(4):1.)
[6] 尹铖, 张生富, 甘魏, 等. 高炉和欧冶炉条件下钒钛炉料软熔行为对比[J]. 钢铁, 2023, 58(8):82.(YIN C, ZHANG S F, GAN W, et al. Comparison of soft melting behavior of vanadium-titanium burden under blast furnace and European smelting furnace conditions[J]. Iron and Steel, 2023, 58(8):82.)
[7] SMIRNOV L, ATRETYAKOV M A, GLADYSHEV V I.Processing vanadium-bearing titanomagnetites at the Nizhniy Tagil Metallurgical Combine[J]. Metallurgist, 2001, 45(5):232.
[8] 张淑会, 邵建男, 毕忠新, 等. 钒钛磁铁矿冶炼高炉喷吹焦炉煤气的减排能力[J]. 钢铁, 2023, 58(2):39.(ZHANG S H, SHAO J N, BI Z X, et al. Emission reduction capacity of injecting coke oven gas into blast furnace of vanadium-titanium magnetite smelting[J]. Iron and Steel, 2023, 58(2):39.)
[9] LI L, JIANG T, CHEN B, et al.Recycling of Ti-extraction blast furnace slag: Preparation of calcium silicate board with high slag content by steam pressure curing[J]. Process Safety and Environmental Protection, 2022, 158:432.
[10] 胡兵, 谢志诚, 黄柱成, 等. 钒钛磁铁海砂矿低温快速直接还原新工艺[J]. 烧结球团, 2020, 45(6):16.(HU B, XIE Z C, HUANG Z C, et al. A new low-temperature rapid direct reduction process for vanadium-titanium magnetite ore[J]. Sintered Pellets, 2020, 45(6):16.)
[11] 李菊艳, 唐恩, 秦涔, 等. 低钛型钒钛磁铁矿深度还原-磨选分离试验[J]. 钢铁钒钛, 2016, 37 (5): 25.(LI J Y, TANG E, QIN X, et al. Deep reduction-grinding separation test of low-titanium vanadium-titanium magnetite[J]. Iron and Steel Vanadium Titanium, 2016, 37(5): 25.)
[12] 赵永强, 孙体昌, 李正要, 等. CaO对海滨钛磁铁矿精矿直接还原-磁选工艺中还原气氛的影响[J]. 工程科学学报, 2020, 42(7):838.(ZHAO Y Q, SUN T C, LI Z Z, et al. Effect of CaO on reducing atmosphere in direct reduction-magnetic separation process of coastal titanomagnetite concentrate[J]. Journal of Engineering Science, 2020, 42(7):838.)
[13] 耿超, 孙体昌, 杨慧芬, 等. 添加剂对海滨钛磁铁矿直接还原磁选钛铁分离的影响[J]. 中国有色金属学报, 2017, 27(8):1720.
(GENG C, SUN T C, YANG H F, et al.Effect of additives on the separation of fertitanium by direct reduction magnetic separation of coastal titanomagnetite[J].Chinese Journal of Nonferrous Metals,2017,27(8):1720.)
[14] 侯耀斌, 洪陆阔, 孙彩娇, 等. 钒钛磁铁矿碱熔低温冶炼工艺研究[J]. 钢铁钒钛, 2020, 41(2):6.(HOU Y B, HONG L K, SUN C J, et al. Research on low temperature smelting process of vanadium titanium magnetite alkali melting[J]. Iron and Steel Vanadium Titanium, 2020, 41(2):6.)
[15] ZHAO L, WANG L, CHEN D, et al.Behaviors of vanadium and chromium in coal-based direct reduction of high-chromium vanadium-bearing titanomagnetite concentrates followed by magnetic separation[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(4): 1325.
[16] LIU J, CHENG G, LIU Z, et al.Reduction process of pellet containing high chromic vanadium-titanium magnetite in cohesive zone[J]. Steel Research International, 2015, 86: 808.
[17] 于春晓, 孙体昌, 徐承焱, 等. 煤泥作还原剂对海滨钛磁铁矿直接还原焙烧磁选的影响[J]. 矿冶工程, 2014, 34(5): 93.(YU C X, SUN T C, XU C Y, et al. Study on coal slime as a reducing agent for seaside titanomagnetite direct reduction roasting process[J]. Mining and Metallurgical Engineering, 2014,34(10): 93.)
[18] 孙绍利, 陈立武, 徐连勇, 等. 承德地区超贫钒钛磁铁矿矿石特征[J]. 科协论坛, 2013(4):112.(SUN S L, CHEN L W, XU L Y, et al. Characteristics of ultra-poor vanadium-titanium magnetite ore in Chengde area[J]. Forum of Association for Science and Technology, 2013(4):112.)
[19] 于宏东, 王丽娜, 曲景奎, 等. 中国典型钒钛磁铁矿的工艺矿物学特征与矿石价值[J]. 东北大学学报(自然科学版), 2020, 41(2):275.(YU H D, WANG L N, QU J K, et al. Process mineralogy characteristics and ore value of typical vanadium-titanium magnetite in China[J]. Journal of Northeastern University(Natural Science), 2020, 41(2):275.)
[20] 刘然, 李超, 吕庆, 等. 承德钒钛磁铁矿粉基础特性及烧结试验研究[J]. 钢铁钒钛, 2014, 35(4):71.(LIU R, LI C, LÜ Q, et al. Basic characteristics and sintering experimental study of vanadium titanium magnetite powder in Chengde[J]. Iron and Steel Vanadium Titanium, 2014, 35(4):71.)
[21] 陈正义, 肖军辉, 陈肖汀, 等. 钒钛磁铁矿精矿钙化焙烧-硫酸浸出强化提钒[J].钢铁,2024,59(7):27.(CHEN Z Y, XIAO J H, CHEN X T, et al. Vanadium titanomagnetite concentrate calcification roasting-sulfuric acid leaching to strengthen vanadium extraction[J].Iron and steel,2024,59(7):27.)
[22] CHEN J W, YANG J, WANG X D.Thermodynamic studies on gas-based reduction of vanadium titano-magnetite pellets[J]. International Journal of Minerals Metallurgy and Materials, 2019, 26(7):22.
[23] CHEN J, CHEN W, MI L, et al.Kinetic studies on gas-based reduction of vanadium titano-magnetite pellet[J]. Metals, 2019, 95(9) :1.
[24] 袁艺旁, 周玉青, 洪陆阔, 等. 氢气协同生物质还原钒钛磁铁矿试验研究[J]. 钢铁钒钛, 2022, 43(1):113.(YUAN Y P, ZHOU Y Q, HONG L K, et al. Experimental study on vanadium titanomagnetite reduction by hydrogen synergistic biomass[J]. Iron and Steel Vanadium Titanium, 2022, 43(1):113.)
[25] 佟帅, 艾立群, 洪陆阔, 等. 微波-氢气协同还原钒钛磁铁矿精矿的冶金效果[J]. 中国冶金, 2023, 33(11):48.(TONG S, AI L Q, HONG L K, et al. Metallurgical effect of microwave-hydrogen synergistic reduction of vanadium-titanium magnetite concentrate[J]. China Metallurgy, 2023, 33(11):48.)
[26] TONG S, AI L Q, HONG L K, et al.Microwave-hydrogen synergistic reduction of vanadium titano-magnetite[J]. ISIJ International, 2023, 63(8):1328.
[27] TONG S, AI L Q, HONG L K, et al.Reduction of Chengde vanadium titanium magnetite concentrate by microwave enhanced Ar-H2 atmosphere[J]. International Journal of Hydrogen Energy, 2024, 49:42.
[28] 姚建明. 铝热还原精炼制备高钛铁的基础研究[D]. 沈阳:东北大学, 2011.
(YAO J M.Basic Research on Preparation of High Titanium Iron by Aluminothermic Reduction Refining[D]. Shenyang: Northeastern University, 2011.)
[29] 邓勇, 甄常亮, 李俊国, 等. 含钛高炉渣钛富集工艺及钛资源利用[J]. 中国冶金, 2022, 32(8):25.(DENG Y, ZHEN C L, LI J G, et al. Titanium enrichment process of titanium-containing blast furnace slag and utilization of titanium resources[J]. China Metallurgy, 2022, 32(8):25.)
[30] 戴玮, 秦博, 颜恒维, 等. 钛铁合金制备研究现状[J]. 有色金属(冶炼部分), 2019(5):50.(DAI W, QIN B, YAN H W, et al. Research status of preparation of titanium-iron alloys[J]. Nonferrous Metals(Smelting Part), 2019(5):50.)
PDF(8106 KB)

100

Accesses

0

Citation

Detail

Sections
Recommended

/