Optimization and analysis of surface milling parameters of additive manufacturing maraging steel

YANG Zeyu, LI Weimin, ZHANG Yanpeng, SONG Minglin, GAO Qi

Iron and Steel ›› 2024, Vol. 59 ›› Issue (6) : 135-144.

PDF(24064 KB)
Welcome to visit Iron and Steel, July 26, 2025
PDF(24064 KB)
Iron and Steel ›› 2024, Vol. 59 ›› Issue (6) : 135-144. DOI: 10.13228/j.boyuan.issn0449-749x.20240091
Materials

Optimization and analysis of surface milling parameters of additive manufacturing maraging steel

Author information +
History +

Abstract

Maraging steels are well known for their high strength and toughness, as well as good molding properties, and are well suited to meet the requirements of additive manufacturing production. However, the poor surface quality of the materials used in its manufacture has constrained its rapid development. And there are few existing studies related to the post-treatment of maraging steel surface additive manufacturing materials. Therefore, in this paper, cladding layers with different lap spacing were fabricated by laser cladding. and the cladding layers with a lap spacing of 0.7 mm was selected for surface milling orthogonal experiments with flatness as the index. The surface roughness of the milled cladding layer and its morphological characteristics were also analyzed, and parameter prediction, experimental validation and analysis were carried out with the aim of reducing the surface roughness. The results show that the cladding layers mainly exhibits wavy, raised and flat shape at different scanning intervals, with a large difference in morphology. The microstructure of the cladding layer mainly consists of cellular crystals and columnar dendritic crystals, and the microstructure is different at different positions. The surface roughness of the material was significantly reduced after cutting, but the knife marks were obvious, exposing the unfused cracks, holes and other defects generated by the additive manufacturing process. Through the orthogonal cutting experiments, it was analyzed that the degree of influence of each parameter on the machined surface roughness is feed rate>depth of cut>spindle speed. Through the effect curve predicted the lowest surface roughness parameters spindle speed of 11 000 r/min, feed rate of 1.5 mm/min, depth of cut of 0.5 mm, the minimum value of roughness at this time is 0.373 μm, compared with the orthogonal cutting experiments, the lowest roughness results in a reduction of 11.4%. The top of the cladding layer produced work hardening after the cutting process, which increased by 10.5% compared with that before the cutting process. The aim of this study is to improve the surface quality of additive manufacturing materials, and to provide reference for the research of additive manufacturing materials post-treatment.

Key words

additive manufacturing / maraging steel / orthogonal experiment / milling process / surface roughness / hardness

Cite this article

Download Citations
YANG Zeyu, LI Weimin, ZHANG Yanpeng, et al. Optimization and analysis of surface milling parameters of additive manufacturing maraging steel[J]. Iron and Steel, 2024, 59(6): 135-144 https://doi.org/10.13228/j.boyuan.issn0449-749x.20240091

References

[1] BIBIN J,MANINKANDAN M,ARIVAZHAGAN N,et al.Current research and developments in welding of 18% nickel maraging steel[J]. Proceedings of the Institution of Mechanical Engineers,Part L: Journal of Materials: Design and Applications,2023,237(6):1295.
[2] 伍征,伟玉. 超高强度钢[J]. 钢铁,1986,21(2):71.(WU Z,WEI Y. Ultra-high strength steel[J]. Iron and Steel,1986,21(2):71.)
[3] KANNAN R,LEONARD D N,NANDWANA P.Optimization of direct aging temperature of Ti free grade 300 maraging steel manufactured using laser powder bed fusion(LPBF)[J]. Materials Science and Engineering:A,2021,817:141266.
[4] 张亮亮,周阳,刘世锋,等. 模具钢增材制造及其性能的研究进展[J]. 中国冶金,2022,32(3):1.(ZHANG L L,ZHOU Y,LIU S F,et al. Research progress in additive manufacturingand properties of die steel[J]. China Metallurgy,2022,32(3):1.)
[5] 谭超林,周克崧,马文有,等. 激光增材制造成型马氏体时效钢研究进展[J]. 金属学报,2020,56(1):36.(TAN C L,ZHOU K S,MA W Y,et al. Research progress of laseradditive manufacturing of maraging steels[J]. Acta Metallurgica Sinica,2020,56(1):36.)
[6] GUO W F,GUO C,ZHU Q.Heat treatment behavior of the 18Ni300 maraging steel additively manufactured by selective laser melting[J]. Materials Science Forum,2018,941:2160.
[7] 李虎,赵伟江,李瑞迪,等. 增材制造马氏体时效钢的研究进展[J]. 中国激光,2022,49(14):15.(LI H,ZHAO W J,LI R D,et al. Progress on additive manufacturing of maraging steel[J]. Chinese Journal of Lasers,2022,49(14):15.)
[8] 朱杰,刘韶华,冯胜强,等. 镁处理18Ni350超高强钢中非金属夹杂物析出热力学分析[J]. 炼钢,2022,38(6):14.(ZHU J,LIU S H,FENG S Q,et al. Thermodynamic analysis of non-metallic inclusion precipitation in ultra highstrength steel 18Ni350 with magnesium treatment[J]. Steelmaking,2022,38(6):14.)
[9] 李波,陈豪,胡忠会,等. G30Cr15Mo1N高氮马氏体钢的连续冷却相变与强化机制[J]. 钢铁,2024,59(5):116.(LI B,CHEN H,HU Z H,et al. Continuous cooling transformation and strengthening mechanismG30Cr15Mo1N high nitrogen martensite steel[J]. Iron and Steel,2024,59(5):116.)
[10] 罗静,裴明哲,雍岐龙,等. 含量对00Cr13Co9Ni5Mo5马氏体时效不锈钢冲击韧性的影响[J]. 钢铁,2010,45(12):77.(LU J,PEI M Z,YONG Q L,et al. Effect of Ti content on the impact toughness ofmaraging stainless steel 00Cr13Co9Ni-5Mo5[J]. Iron and Steel,2010,45(12):77.)
[11] 向超,张涛,吴文伟,等. 热处理对选区激光熔化18Ni300马氏体时效钢微观组织和力学性能的影响[J/OL]. 中国激光,2024[2024-02-26].http://kns.cnki.net/kcms/detail/31.1339.tn.20231120.0927.014.html.(XIANG C,ZHANG T,WU W W,et al. Effect of heat treatment on microstructure and mechanical properties of selective laser melting 18Ni300 maraging steel[J/OL]. Chinese Journal of Lasers,2024[2024-02-26].http://kns.cnki.net/kcms/detail/31.1339.tn.20231120.0927.014.html.)
[12] 冯育磊,张训国,叶晋,等. 大型风电轴承滚道表面激光熔覆马氏体不锈钢涂层显微组织及性能研究[J]. 中国激光,2022,49(22):92.(FENG Y L,ZHANG X G,YE J,et al. Microstructure and properties of laser cladding martensitic stainless steel coating on large wind-power bearing raceway surface[J]. Chinese Journal of Lasers,2022,49(22):92.)
[13] MENG L,ZHU B,HU Q,et al.Laser-induction hybrid cladding of different coatings on rail surface: Microstructure,wear properties and contact fatigue behaviors[J]. Applied Surface Science,2021,566:150678.
[14] 牛艳娥,赵芃沛,李宁,等. 国内外超高强度钢的研究现状及应用[J]. 兵器装备工程学报,2021,42(7):274.(NIU Y E,ZHAO P P,LI N,et al. Research status and application of ultra-high strength steel at home and abroad[J]. Journal of Ordnance Equipment Engineering,2021,42(7):274.)
[15] YANG Z,HAO H,GAO Q,et al.Strengthening mechanism and high-temperature properties of H13+WC/Y2O3 laser-cladding coatings[J]. Surface and Coatings Technology,2021,405:126544.
[16] 王岩,屈栋,魏瑛康,等.17-4PH马氏体沉淀硬化不锈钢表面防护技术研究进展[J]. 中国冶金,2022,32(10):13.(WANG Y,QU D,WEI Y K,et al. Research progress on surface protection technology of 17-4PH martensite precipitation-hardening stainless steel[J]. China Metallurgy,2022,32(10):13.)
[17] 李绍宏,何文超,张旭,等.H13型热作模具钢表面改性技术研究进展[J]. 钢铁,2021,56(3):13.(LI S H,HE W C,ZHANG X,et al. Research progress on surface treatment technologies of H13 hot work die steel[J]. Iron and Steel,2021,56(3):13.)
[18] 吴圣川,胡雅楠,杨冰,等.增材制造材料缺陷表征及结构完整性评定方法研究综述[J]. 机械工程学报,2021,57(22):3.(WU S C,HU Y N,YANG B,et al. Reviewon defect characterization and structural integrity assess-ment method of additively manufactured materials[J]. Journal of Mechanical Engineering,2021,57(22):3.)
[19] WANG D,LIU Y,YANG Y Q,et al.Theoreticaland experimental study on surface roughness of 316L stainless steel metal parts obtained through selectivelaser melting[J]. Rapid Prototyping Journal,2016,22:706.
[20] 刘倩,卢秉恒. 金属增材制造质量控制及复合制造技术研究现状[J]. 材料导报,2024(9):1.(LIU Q,LU B H. Review on quality control and relevant hybrid technology in additive manufacturing of metallic materials[J]. Materials Reports,2024(9):1.)
[21] 刘静怡,李文辉,李秀红. 航空零部件的金属增材制造光整加工技术研究进展[J]. 表面技术,2023,52(12):20.(LIU J Y,LI W H,LI X H,et al. Research progress of finishing technology for aviationparts built by metal additive manufacturing[J]. Surface Technology,2023,52(12):20.)
[22] 王海楠,程延海,马昆,等. 后处理对高速激光熔覆表面性能的影响[J]. 中国表面工程,2023,36(5):88.(WANG H N,CHENG Y H,MA K,et al. Effect of post-treatment on coating surface properties of high-speed laser cladding[J]. China Surface Engineering,2023,36(5):88.)
[23] ZHANG P,JI G,LÜ T,et al.The influence of turning and burnishing on corrosion resistance of laser cladded Fe-Cr-Ni layer from viewpoints of thermodynamics and kinetics[J]. Archives of Civil and Mechanical Engineering,2022,23(3):19.
[24] 熊晓晨,秦训鹏,华林,等. 复合式增材制造技术研究现状及发展[J]. 中国机械工程,2022,33(17):2087.
(XIONG X C,QIN X P,HUA L,et al.Research status and development of hybrid additivemanufacturing technology[J]. China Mechanical Engineering,2022,33(17):2087.)
[25] SHU L,CANG X,ZHOU J,et al.Study on machinability and grain deformation of laser cladding manufactured and wrought IN718 alloys in dry milling process[J]. Materials Today Communications,2023,34:105066.
[26] 刘士博,程志江,吴动波,等. 基于PSO的TC4钛合金铣削参数优化研究[J]. 组合机床与自动化加工技术,2023(10):155.(LIU S B,CHENG Z J,WU D B,et al. Optimization of milling parameters of TC4 titanium alloy based on PSO[J]. Modular Machine Tool and Automatic Manufacturing Technique,2023(10):155.)
[27] 施克明,杨桂林,王明娣,等. 金属熔覆件侧面激光铣削整形工艺的研究[J]. 中国机械工程,2017,28(22):2766.
(SHI K M,YANG G L,WANG M D,et al.Study on laser milling process parameters for sides of laser cladding parts[J]. China Mechanical Engineering,2017,28(22):2766.)
[28] YANG Z,LI W,LIU S,et al.Study on overlap rate and machinability of selected laser melting of maraging steel[J]. Materials Science-Poland,2023,41(2):368.
[29] LIU B,KUAI Z,LI Z,et al.Performance consistency of AlSi10Mg alloy manufactured by simulating multi laser beam selective laser melting (SLM): Microstructures and mechanical properties[J]. Materials,2018,11(12):2354.
[30] 舒林森,张粲东,于鹤龙,等. 激光熔覆原位Ti-C-B-Al复合涂层的结构特征与力学性能[J]. 材料导报,2024,38(2):177.(SHU L S,ZHANG C D,YU H L,et al. Structural characteristies and mechanical properties of laser-fused in-situTi-C-B-Al composite coatings[J]. Materials Reports,2024,38(2):177.)
[31] 刘壮壮,丁明路,谢建新. 金属3D打印数字化制造研究进展[J]. 金属学报,2024,60(5):569.(LIU Z Z,DING M L,XlE J X. Advancements in digital manufacturing for metal 3D printing[J]. Acta Metallurgica Sinica,2024,60(5):569.)
[32] 李垭焓,谭诚香,李梦瑶,等. 激光熔覆铁基合金涂层的研究进展[J]. 表面技术,2024,53(6):11.(LI Y H,TAN C X,LI M Y,et al. Research progress of laser-cladding Fe-based alloy coating[J]. Surface Technology,2024,53(6):11.)
[33] 刘占琪. TRT叶片表面激光合金化涂层制备及性能研究[D]. 秦皇岛:燕山大学,2023.
(LIU Z Q.Preparation and Properties of Laser Alloying Coating on TRT Blade Surface[D]. Qinhuangdao:Yanshan University,2023.)
[34] 刘旭波,操顺森,李学文,等. 3D激光熔覆铁基合金温度场模拟及其试验[J]. 材料科学与工程学报,2020,38(3):439.(LIU X B,CAO S S,Ll X W,et al. Temperature field simulation and experimental study of 3D laser cladding Fe-based alloy[J]. Journal of Materials Science and Engineering,2020,38(3):439.)
[35] 程延海,蒋艺超,杨金勇,等. 镍基合金激光熔覆数值模拟及凝固参数预测[J]. 工程热物理学报,2022,43(2):494.(CHENG Y H,JIANG Y C,YANG J Y,et al. Heat transfer simulation and solidifcation parameter prediction of nickel-based alloy laser cladding[J]. Journal of Engineering Thermophysics,2022,43(2):494.)
[36] 崔陆军,于计划,曹衍龙,等. 多道搭接钴基合金激光熔覆层的组织与性能[J]. 金属热处理,2020,45(3):41.(CUI L J,YU J H,CAO Y L,et al. Microstructure and properties of multi-track joint Co-basedalloy laser clad layer[J]. Heat Treatment of Metals,2020,45(3):41.)
[37] ZHANG H,ZENG H,YAN R,et al.Analytical modeling of cutting forces considering material softening effect in laser-assisted milling of AerMet100 steel[J]. The International Journal of Advanced Manufacturing Technology,2021,113(1):1.
[38] 田鹏飞. 高温合金Inconel 718切削加工机理及其刀具创新优化设计研究[D]. 贵阳:贵州大学,2022.
(TIAN P F.Research on Cutting Mechanism and Tool Innovation Optimization Design of Superalloy Inconel 718[D]. Guiyang:Guizhou University,2022.)
[39] 安虎平. 高锰钢高速切削机理及其影响因素研究[D]. 兰州:兰州理工大学,2022.
(AN H P.Research on High Speed Cutting Mechanism and Influencing Factors of High Manganese Steel[D]. Lanzhou:Lanzhou University of Technology,2022.)
[40] 温雪龙,赵正豪,巩亚东,等. FeCoNiCrAlx高熵合金铣削表面质量影响因素实验研究[J/OL]. 机械工程学报,2024[2024-02-26].http://kns.cnki.net/kcms/detail/11.2187.TH.20240123.1118.014.html.(WEN X L,ZHAO Z H,GONG Y D,et al. Experimental study on influencing factors of surface quality in milling of FeCoNiCrAlx high entropy alloy[J/OL]. Journal of Mechanical Engineering,2024[2024-02-26].http://kns.cnki.net/kcms/detail/11.2187.TH.20240123.1118.014.html.)
[41] 张帅. 机器人电弧熔丝增材-机械铣削减材复合制造基础研究[D]. 武汉:华中科技大学,2022.
(ZHANG S.Fundamental Study of Hybrid Wire Arc Additive-Milling Subtractive Manufacturing[D]. Wuhan:Huazhong University of Science and Technology,2022.)
[42] LIU B,LI Q B,LI Z.Selective laser remelting of an additive layer manufacturing process on AlSi10Mg[J]. Results in Physics,2019(12):982.
[43] 章媛洁,宋波,赵晓,等. 激光选区熔化增材与机加工复合制造AISI 420不锈钢:表面粗糙度与残余应力演变规律研究[J]. 机械工程学报,2018,54(13):170.(ZHANG Y J,SONG B,ZHAO X,et al. Selective laser melting and subtractive hybrid manufacture AISI420 stainless steel: Evolution on surface roughness and residual stress[J]. Journal of Mechanical Engineering,2018,54(13):170.)
[44] 杜巍. 增材减材制造钛合金材料性能完整性研究[D]. 大连:大连理工大学,2018.
(DU W.Study on Material Property Integrity of Titanium Alloy Fabricated by Additive and Subtractive Manufacturing[D]. Dalian:Dalian University of Technology,2018.)
[45] HEIGEL J C,PHAN T Q,FOX J C,et al.Experimental investigation of residual stress and its impact on machining in hybrid additive/subtractive manufacturing[J]. Procedia Manufacturing,2018,26:929.
[46] MAO Z F,LU X D,YANG H R,et al.Processing optimization,microstructure,mechanical properties and nanoprecipitation behavior of 18Ni300 maraging steel in selective laser melting[J]. Materials Science and Engineering: A,2022,830:142234.
[47] 朱晓翔,杨庚蔚,赵刚,等. 热轧中锰马氏体耐磨钢的冲击磨损行为[J]. 钢铁,2022,57(7):154.(ZHU X X,YANG G W,ZHAO G,et al. Impact abrasive wear behavior of hot-rolled mediummanganese martensitic wear-resistant steel[J]. Iron and Steel,2022,57(7):154.)
PDF(24064 KB)

33

Accesses

0

Citation

Detail

Sections
Recommended

/