高铬型钒钛铁精矿金属化球团的物化性能

吴恩辉, 李军, 徐众, 侯静, 黄平

钢铁 ›› 2023, Vol. 58 ›› Issue (2) : 30-38.

PDF(3443 KB)
欢迎访问《钢铁》官方网站!今天是 2025年7月30日 星期三
PDF(3443 KB)
钢铁 ›› 2023, Vol. 58 ›› Issue (2) : 30-38. DOI: 10.13228/j.boyuan.issn0449-749x.20220496
原料与炼铁

高铬型钒钛铁精矿金属化球团的物化性能

  • 吴恩辉1,2, 李军1,2, 徐众1,2, 侯静1,2, 黄平1,2
作者信息 +

Physicochemical properties of metallized pellets of high-chromium vanadium-bearing titanomagnetite

  • 吴恩辉1,2, 李军1,2, 徐众1,2, 侯静1,2, 黄平1,2
Author information +
文章历史 +

摘要

高铬型钒钛铁精矿煤基直接还原-电炉熔分新工艺是实现铁、钒、钛和铬元素综合利用最有前景的非高炉冶炼工艺之一,而金属化球团的物化性能与后续电炉熔分工艺能否顺行密切相关。采用煤基直接还原工艺,研究了还原温度、还原时间、煤矿质量比和二元碱度对高铬型钒钛铁精矿金属化球团的物相组成、金属化率、残碳量、电阻率和抗压强度等物化性能的影响规律。试验结果表明,提高还原温度和延长还原时间均有利于磁铁矿和钛铁矿分别被还原为金属铁和黑钛石,而较高的煤矿质量比和二元碱度对还原过程不利;金属化球团电阻率的大小依赖于金属化球团的物相组成、不同物相组成的含量及各个物相之间的结合形式;金属化球团的金属化率与电阻率呈现较为明显的负相关,但是随着金属化率的提高,负相关的程度有所降低;在金属化率大于90%时,电阻率均小于0.5 Ω/cm;金属铁的生成量和金属铁晶粒之间的连接作用是影响金属化球团抗压强度的关键因素,提高还原温度和延长还原时间有助于金属化球团抗压强度的提高,而随着煤矿质量比和二元碱度的提高,金属化球团的抗压强度降低。在还原温度为1 300 ℃、还原时间为35 min、煤矿质量比为25∶100、二元碱度为0.13的条件下,金属化球团的金属化率、残碳量、电阻率和抗压强度分别为92.58%、5.39%、0.3 Ω/cm和81.74 N/球。

Abstract

The iron, vanadium, titanium and chromium of high-chromium vanadium-bearing titanomagnetite can be comprehensively utilized by coal based direct reduction-electric furnace melting separation new process, which is one of the most promising non-blast furnace smelting processes. The physicochemical properties of high-chromium vanadium-bearing titanomagnetite metallized pellets have an important impact on the subsequent electric furnace melting and separation process. Based on this, the effects of reduction temperature, reduction time, coal-ore mass ratio and binary basicity on the physicochemical properties such as phase composition, metallization rate, carbon residue, resistivity and compressive strength of metallized pellets during coal based direct reduction were investigated. The magnetite and ilmenite were reduced to metallic iron and anosovite with increasing the reduction temperature and prolonging the reduction time, while higher coal-ore mass ratio and binary basicity have an adverse effect on the reduction process. The resistivity of the metallized pellets depends on the phase compositions, the content of different phase compositions and the combination form between each phase compositions of the metallized pellets. There was an obvious negative correlation between the metallization rate and resistivity of metallized pellets, while the degree of negative correlation decreased with the metallization rate increased. When the metallization rate was higher than 90%, the resistivity of metallized pellets was lower than 0.5 Ω/cm. The formation content of metallic iron and the connection form between metallic iron grains were the key factors affecting the compressive strength of metallized pellets. The increase of reduction temperature and reduction time was favorable to improve the compressive strength of metallized pellets, while the compressive strength of metallized pellets decrease with increasing the coal-ore mass ratio and binary basicity. Under the condition of reduction temperature of 1 300 ℃, reduction time of 35 min, coal-ore mass ratio of 25∶100, and binary basicity of 0.13, the metallization rate, carbon residue, resistivity and compressive strength of metallized pellets are 92.58%, 5.39%, 0.3 Ω/cm and 81.74 N/pellet respectively.

关键词

钛磁铁矿 / 煤基直接还原 / 金属化球团 / 电阻率 / 抗压强度

Key words

titanomagnetite / coal-based direct reduction / metallized pellet / resistivity / compressive strength

图表

引用本文

导出引用
吴恩辉, 李军, 徐众, . 高铬型钒钛铁精矿金属化球团的物化性能[J]. 钢铁, 2023, 58(2): 30-38 https://doi.org/10.13228/j.boyuan.issn0449-749x.20220496
WU En-hui, LI Jun, XU Zhong, et al. Physicochemical properties of metallized pellets of high-chromium vanadium-bearing titanomagnetite[J]. Iron and Steel, 2023, 58(2): 30-38 https://doi.org/10.13228/j.boyuan.issn0449-749x.20220496

参考文献

[1] 侯飘, 余文轴, 白晨光, 等.钒钛磁铁矿冶炼铁水的黏流性能及其影响因素[J].钢铁, 2022, 57(1): 57. (HOU Piao, YU Wen-zhou, BAI Chen-guang, et al. Viscous flow properties and influencing factors of vanadium-titanium magnetite smelting iron[J].Iron and Steel, 2022, 57(1): 57.)
[2] 储满生, 唐珏, 柳政根, 等. 高铬型钒钛磁铁矿综合利用现状及进展[J]. 钢铁研究学报, 2017, 29(5): 335. (CHU Man-sheng, TANG Jue, LIU Zheng-gen, et al. Present situation and progress of comprehensive utilization for high-chromium vanadium-bearing titanomagnetite[J]. Journal of Iron and Steel Research, 2017, 29(5): 335.)
[3] 杨绍利. 钒钛材料[M]. 北京: 冶金工业出版社, 2007. (YANG Shao-li. Vanadium Titanium Material[M]. Beijing: Metallurgical Industry Press, 2007.)
[4] 周诗发, 郑海燕, 董越, 等. 钒钛磁铁矿含碳球团的还原历程[J]. 钢铁, 2021, 56(6): 15.(ZHOU Shi-fa, ZHENG Hai-yan, DONG Yue, et al. Reduction dynamics of carbon-containing pellets of vanadium-bearing titanomagnetite[J]. Iron and Steel, 2021, 56(6): 15.)
[5] 吴恩辉, 侯静, 李军, 等. 钒钛铁精矿非自然碱度含碳球团高温固态还原试验[J]. 钢铁, 2018, 53(1): 24.(WU En-hui, HOU Jing, LI Jun, et al. Experiment on solid state reduction of non-natural basicity carbon-containing pellet of vanadium-bearing titanomagnetite at high temperature[J]. Iron and Steel, 2018, 53(1): 24.)
[6] 刘松利, 白晨光, 胡途, 等. 钒钛铁精矿内配碳球团高温快速直接还原历程[J]. 重庆大学学报, 2011, 34(1): 60.(LIU Song-li, BAI Chen-guang, HU Tu, et al. Quick and direct reduction process of vanadium and titanium iron concentrate with carbon-containing pellets at high temperature[J]. Journal of Chongqing University, 2011, 34(1): 60.)
[7] HU Tu, Ly Xue-wei, BAI Chen-guang, et al. Isothermal reduction of titanomagnetite concentrates containing coal[J]. International Journal of Minerals Metallurgy and Materials, 2014, 21(2):131.
[8] 曹明明, 张建良, 邢相栋, 等. 钒钛磁铁矿含碳球团的还原机制[J]. 钢铁, 2012, 47(8): 5.(CAO Ming-ming, ZHANG Jian-liang, XIONG Xiang-dong, et al. Reduction mechanism of vanadium titano-magnetite caron composite pellet[J]. 2012, 47(8): 5.)
[9] HU Tu, L Xue-wei, BAI Chen-guang, et al. Reduction behavior of panzhihua titanomagnetite concentrates with coal[J]. Metallurgical and Materials Transactions B, 2013, 44(2):252.
[10] SHE X F, SUN H Y, DONG X J, et al. Reduction mechanism of titanomagnetite concentrate by carbon monoxide[J]. Journal of Mining and Metallurgy, Section B: Metallurgy, 2013, 49(3):263.
[11] 陈德胜, 宋波, 王丽娜, 等. 钒钛磁铁精矿直接还原反应行为及其强化还原研究[J]. 北京科技大学学报, 2011, 33(11): 1331. (CHEN De-sheng, SONG Bo, WANG Li-na, et al. Direct reduction and enhanced reduction of vanadium-bearing titanomagnetite concentrates[J]. Journal of University of Science and Technology Beijing, 2011, 33(11):1331.)
[12] CHEN De-sheng, SONG Bo, WANG Li-na, et al. Solid state reduction of panzhihua titanomagnetite concentrates with pulverized coal[J]. Minerals Engineering, 2011, 24(8):864.
[13] ZHANG Jian-liang, XING Xiang-dong, CAO Ming-ming, et al. Reduction kinetics of vanadium titano-magnetite carbon composite pellets adding catalysts under high temperature[J]. Journal of Iron and Steel Research, International, 2013, 20(2):1.
[14] Park E, Ostrovski O. Effects of preoxidation of titania-ferrous ore on the ore structure and reduction behavior[J]. ISIJ International, 2004, 44(1):74.
[15] LI Wei, FU Gui-qin, CHU Man-sheng, et al. Reduction behavior and mechanism of Hongge vanadium titanomagnetite pellets by gas mixture of H2 and CO[J]. Journal of Iron and Steel Research, International, 2017, 24(1): 34.
[16] TANG Jue, CHU Man-sheng, LI Feng, et al. Reduction mechanism of high-chromium vanadium-titanium magnetite pellets by H2-CO-CO2 gas mixtures[J]. International Journal of Minerals Metallurgy and Materials, 2015, 22(6): 562.
[17] LI Wei, WANG Nan, FU Gui-qin, et al. Influence of TiO2 addition on the oxidation induration and reduction behavior of Hongge vanadium titanomagnetite pellets with simulated shaft furnace gases[J]. Powder Technology, 2018, 326:137.
[18] LI Wei, FU Gui-qin, CHU Man-sheng, et al. Effect of porosity of Hongge vanadium titanomagnetite-oxidized pellet on its reduction swelling behavior and mechanism with hydrogen-rich gases[J]. Powder Technology, 2019, 343: 194.
[19] TANG Wei-dong, YANG Song-tao, XUE Xiang-xin. Effect of Cr2O3 addition on oxidation induration and reduction swelling behavior of chromium-bearing vanadium titanomagnetite pellets with simulated coke oven gas[J]. International Journal of Minerals, Metallurgy and Materials, 2019, 26(8): 963.
[20] TANG Wei-dong, YANG Song-tao, XUE Xiang-xin. Effect of B2O3 addition on oxidation induration and reduction swelling behavior of chromium-bearing vanadium titanomagnetite pellets with simulated coke oven gas[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(7): 1549.
[21] LI Feng, CHU Mang-shen, TANG Jue, et al. Swelling behavior of high-chromium vanadium-bearing titanomagnetite pellets in h2-co-co2 gas mixtures[J]. JOM, 2017,69(10): 1751.
[22] FENG Cong, CHU Man-sheng, TANG Jue, et al. Effects of smelting parameters on the slag/metal separation behaviors of Hongge vanadium-bearing titanomagnetite metallized pellets obtained from the gas-based direct reduction process[J]. International Journal of Minerals, Metallurgy and Materials, 2018, 25(6): 609.
[23] TANG Jue, CHU Man-sheng, FENG Cong, et al. Melting separation behavior and mechanism of high-chromium vanadium-bearing titanomagnetite metallized pellet got from gas-based direct reduction[J]. ISIJ International, 2016, 56(2): 210.
[24] ZHOU Mi, JIANG Tao, DING Xue-yong, et al. Thermodynamic study of direct reduction of high-chromium vanadium-titanium magnetite (HCVTM) based on phase equilibrium calculation model[J]. Journal of Thermal Analysis and Calorimetry, 2019, 136(2): 885.
[25] YANG Song-tao, ZHOU Mi, JIANG Tao, et al. Application of a water cooling treatment and its effect on coal-based reduction of high-chromium vanadium and titanium iron ore[J]. International Journal of Minerals Metallurgy and Materials, 2016, 23(12): 1353.
[26] 姜涛, 徐静, 关山飞, 等.高铬型钒钛磁铁矿煤基直接还原研究[J].东北大学学报(自然科学版), 2015, 36(1): 77. (JIANG Tao, XU Jing, GUAN Shan-fei, et al. Study on coal-based direct reduction of high-chromium vanadium-titanium magnetite[J]. Journal of Northeastern University(Natural Science), 2015, 36(1): 77.)
[27] ZHAO Long-sheng, WANG Li-na, CHEN De-sheng, et al. Behaviors of vanadium and chromium in coal-based direct reduction of high-chromium vanadium-bearing titanomagnetite concentrates followed by magnetic separation[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(4): 1325.
[28] 王东彦, 陈伟庆, 周荣章, 等. 含锌铅粉尘金属化球团的固结机理[J]. 北京科技大学学报, 1996,21(5): 410. (WANG Dong-yan, CHEN Wei-qing, ZHOU Rong-zhang, et al. Bond mechanism of metallic pellet produced form Zn-Pb-bearing iron and steel planet dust[J]. Journal of University of Science and Technology Beijing, 1996,21(5): 410.)
[29] 张建良, 邢相栋, 王春龙, 等. 钒钛磁铁矿金属化球团固结机理研究[J]. 烧结球团, 2012, 37(3): 26. (ZHANG Jian-liang, XING Xiang-dong, WANG Chun-long, et al. Study on bonding mechanism of vanadium titano-magnetite metalized pellets[J]. Sintering and Pelletizing, 2012, 37(3): 26.)
[30] ZHANG Ying-yi, CUI Kun-kun, WANG Jie, et al. Effects of direct reduction process on the microstructure and reduction characteristics of carbon-bearing nickel laterite ore pellets[J]. Powder Technology, 2020, 376: 496.

基金

四川省科技计划资助项目(2020YFH0195); 攀枝花市科技计划资助项目(2021CY-G-4)

PDF(3443 KB)

44

Accesses

0

Citation

Detail

段落导航
相关文章

/