真空感应熔炼气雾化(VIGA)工艺具备细粉收得率高、高效率以及低成本等优点,是目前增材制造用粉体制备最为通用的工业技术。由于超声速流场冲击液滴形成粉体的雾化过程机理复杂,粉体质量与细粉收得率难以兼顾是关键技术问题之一。数值模拟通过可视化展示氩气流场和金属熔体破碎的过程,有助于分析VIGA工艺中超声速流场冲击液滴形成粉体的复杂机理。首先通过数值模拟对VIGA工艺的氩气流场、金属熔体破碎过程进行可视化分析,结合试验研究气雾化参数对细粉收得率以及粉末形貌的影响。主要的气雾化参数为气体压强(4、5 MPa)、气体温度(300、373、423 K)、熔体漏眼直径(5 mm)、熔体温度(1 873 K)。研究结果表明,气体压强升高、气体加热可以明显提升超声速氩气流速度,模拟结果给出的最优参数为雾化气体压强5 MPa、气体温度423 K。机理分析发现,上升气流是金属熔体在一次雾化时的主要作用气流,作用为液膜拓展至初始液滴形成;初始液滴在超声速气流交叉冲击区进行二次雾化,液滴破碎后冷却形成粉末。采用最优工艺参数进行试验,实际细粉收得率可达到约66.59%,制备的粉末球形度良好。此外,雾化气体加热对粉体表面熔覆氧无明显影响。为开发18Ni马氏体时效钢材料及相应的气雾化制粉工艺提供技术支持,有望提高雾化效率和粉末性能。
Abstract
The vacuum induction gas atomization (VIGA) process has the advantages of high fine powder yield, high efficiency, and low cost, and it is currently the most common industrial technology for powder preparation for additive manufacturing. Due to the complexity of the atomization process of the supersonic flow field impacting droplets to form powders, it is challenging to balance the powder quality and fine powder yield, which is one of the critical technical problems. Numerical simulation helps to analyze the complex mechanism of powder formation by supersonic flow field impacting droplets in the VIGA process by visualizing the argon flow field and the process of metal melt crushing. It is visualized the argon flow field and metal melt crushing process of the VIGA process through numerical simulation and studied the effect of atomization parameters on the fine powder yield and powder morphology in combination with experiments. The main atomization parameters are gas pressure (4, 5 MPa), gas temperature (300, 373, 423 K), melt nozzle diameter (5 mm), and melt temperature (1 873 K). The results show that the gas pressure increasing, gas heating can significantly enhance the supersonic argon gas flow velocity, simulation results give the optimal parameters for atomization gas pressure 5 MPa, gas temperature 423 K. Mechanism analysis found that the rising gas flow is the central role of the metal melt in the primary atomization of the gas flow, and the role of the liquid film to expands to the formation of the initial droplets. The initial droplets are secondly atomized in the cross-impact area of the supersonic flow, and the droplets are crushed and cooled to form powder. Using the optimal process parameters for the experiment, the actual fine powder yield can reach about 66.59%, and the prepared powder has a good sphericity. In addition, the atomizing gas heating has no significant effect on the fusion-coated oxygen on the powder surface. It provides technical support for developing 18Ni martensitic aging steel materials and the corresponding gas atomization powder-making process, which is expected to improve the atomization efficiency and powder properties.
关键词
真空感应气雾化 /
数值模拟 /
18Ni250钢 /
一次雾化 /
二次雾化 /
粉体质量
{{custom_keyword}} /
Key words
vacuum induction gas atomization /
numerical simulation /
18Ni250 steel /
primary atomization /
secondary atomization /
powder quality
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王磊, 卢秉恒. 我国增材制造技术与产业发展研究[J]. 中国工程科学, 2022, 24(4): 202.(WANG L, LU B H. Development of additive manufacturing technology and industry in China[J]. Strategic Study of CAE, 2022, 24(4): 202.)
[2] 杨强, 鲁中良, 黄福享, 等. 激光增材制造技术的研究现状及发展趋势[J]. 航空制造技术, 2016(12): 26.(YANG Q, LU Z L, HUANG F X, et al. Research on status and development trend of laser additive manufacturing[J]. Aeronautical Manufacturing Technology, 2016(12): 26.)
[3] 王长军,刘雨,周健,等.金属增材技术在钢铁领域的研究进展[J].中国冶金,2022,32(5):7.(WANG C J, LIU Y, ZHOU J, et al. Research progress of metal additive technology in iron and steel field[J]. China Metallurgy, 2022,32(5):7.)
[4] 欧阳鸿武,陈欣,余文焘,等.气雾化制粉技术发展历程及展望[J].粉末冶金技术,2007(1):53.(OUYANG H W, CHEN X, YU W T, et al. Progress and prospect on the gas atomization[J]. Powder Metallurgy Technology, 2007(1):53.)
[5] GU D, SHI X, POPRAWE R, et al. Material-structure-performance integrated laser-metal additive manufacturing[J]. Science, 2021, 372(6545): abg1487.
[6] 张亮亮,周阳,刘世锋,等.模具钢增材制造及其性能的研究进展[J].中国冶金,2022,32(3):1.(ZHANG L L, ZHOU Y, LIU S F, et al. Research progress in additive manufacturing and properties of die steel[J]. China Metallurgy, 2022,32(3):1.)
[7] HUANG Y, LEU M C, MAZUMDER J, et al.Additive manufacturing: Current state, future potential, gaps and needs, and recommendations[J]. Journal of Manufacturing Science and Engineering, 2015, 137: 014001.
[8] DEBROY T, MUKHERJEE T, MILEWSKI J O, et al.Scientific, technological and economic issues in metal printing and their solutions[J]. Nature Materials, 2019, 18: 1026.
[9] BANDYOPADHYAY A, ZHANG Y, BOSE S.Recent developments in metal additive manufacturing[J]. Current Opinion in Chemical Engineering, 2020, 28: 96.
[10] BLAKEY-MILNER B, GRADL P, SNEDDEN G, et al.Metal additive manufacturing in aerospace: A review[J]. Materials and Design, 2021, 209: 110008.
[11] SAMES W J, LIST F A, PANNALA S, et al.The metallurgy and processing science of metal additive manufacturing[J]. International Materials Reviews, 2016, 61: 315.
[12] FREITAS B J M, RODRIGUES L C M, CLAROS C A E, et al. Ferritic-induced high-alloyed stainless steel produced by laser powder bed fusion(L-PBF) of 2205 duplex stainless steel: Role of microstructure, corrosion, and wear resistance[J]. Journal of Alloys and Compounds, 2022, 918: 165576.
[13] LI B, ZHANG L, XU Y, et al.Selective laser melting of CoCrFeNiMn high entropy alloy powder modified with nano-TiN particles for additive manufacturing and strength enhancement: Process, particle behavior and effects[J]. Powder Technology, 2020, 360: 509.
[14] RIENER K, ALBRECHT N, ZIEGELMEIER S, et al.Influence of particle size distribution and morphology on the properties of the powder feedstock as well as of AlSi10Mg parts produced by laser powder bed fusion(LPBF)[J]. Additive Manufacturing, 2020, 34: 101286.
[15] WEI M, CHEN S, SUN M, et al.Atomization simulation and preparation of 24CrNiMoY alloy steel powder using VIGA technology at high gas pressure[J]. Powder Technology, 2020, 367: 724.
[16] QADDAH B, CHAPELLE P, BELLOT J P, et al.Swirling supersonic gas flow in an EIGA atomizer for metal powder production: Numerical investigation and experimental validation[J]. Journal of Materials Processing Technology, 2022, 311: 117814.
[17] ZHAO Y, CUI Y, NUMATA H, et al.Centrifugal granulation behavior in metallic powder fabrication by plasma rotating electrode process[J]. Scientific Reports, 2020, 10: 18446.
[18] QIU C, PANWISAWAS C, WARD M, et al.On the role of melt flow into the surface structure and porosity development during selective laser melting[J]. Acta Materialia, 2015, 96: 72.
[19] PAN H, ZHU L, CHENG J, et al.Size-dependent microstructure evolution and formation mechanisms during the gas atomization process of FGH4113A Ni-based superalloy powder[J]. Vacuum, 2023, 209: 111751.
[20] SI C, TANG X, ZHANG X, et al.Characteristics of 7055Al alloy powders manufactured by gas-solid two-phase atomization: A comparison with gas atomization process[J]. Materials and Design, 2017, 118: 66.
[21] NI G, WANG S, LI Q, et al.Preparation of Cr17Mn11Mo3N powders by high-pressure gas atomization and the nitrogen increasing mechanism[J]. Powder Technology, 2021, 385: 490.
[22] ZHAO T, CHEN C, LIU X, et al.Effect of gas Mach number on the flow field of close-coupled gas atomization, particle size and cooling rate of as-atomized powder: Simulation and experiment[J]. Advanced Powder Technology, 2023, 34(5): 104007.
[23] WANG P, LI J, WANG X, et al.Impact mechanism of gas temperature in metal powder production via gas atomization[J]. Chinese Physics B,2021, 30: 054702.
[24] MATHIAS L E, ANDREOLI A F, GARGARELLA P.Gas atomization of A2 tool steel: Effect of process parameters on powders' physical properties[J]. Journal of Alloys and Compounds, 2023, 960: 170696.
[25] WANG P, LIU J, DONG Y, et al.Breakup process modeling and production of FeSiAl magnetic powders by close-coupled gas atomization[J]. Journal of Materials Research and Technology, 2023, 23: 730.
[26] ZEOLI N, TABBARA H, GU S.CFD modeling of primary breakup during metal powder atomization[J]. Chemical Engineering Science, 2011, 66(24): 6498.
[27] RATHORE S K, DAS M K.Comparison of two low-Reynolds number turbulence models for fluid flow study of wall bounded jets[J]. International Journal of Heat and Mass Transfer, 2013, 61: 365.
[28] THOMPSON J, HASSAN O, ROLLAND S, et al.The identification of an accurate simulation approach to predict the effect of operational parameters on the particle size distribution (PSD) of powders produced by an industrial close-coupled gas atomiser[J]. Powder Technology, 2016, 291: 75.
[29] LI X, FRITSCHING U.Process modeling pressure-swirl-gas-atomization for metal powder production[J]. Journal of Materials Processing Technology, 2016, 239: 1.
[30] 祁航,周香林,徐良辉,等.超音速气雾化喷嘴的水流模拟实验研究[J].热喷涂技术,2020,12(3):54.(QI H, ZHOU X L, XU L H, et al. Study on water flow simulation experimental with supersonic gas atomizing nozzle[J]. Thermal Spray Technology, 2020,12(3): 54.)
[31] KAISER R, LI C, YANG S, et al.A numerical simulation study of the path-resolved breakup behaviors of molten metal in high-pressure gas atomization: With emphasis on the role of shock waves in the gas/molten metal interaction[J]. Advanced Powder Technology, 2018, 29: 623.
[32] BECKERS D, ELLENDT N, FRITSCHING U, et al.Impact of process flow conditions on particle morphology in metal powder production via gas atomization[J]. Advanced Powder Technology, 2019, 31: 300.
[33] 施立新. 金属熔体雾化喷嘴流场数值研究[D].福州:福州大学, 2014.
(SHI L X.The Numerical Simulation about Flow Fields of Atomizationnozzie of Metal Melt[D]. Fuzhou:Fuzhou University, 2014.)
[34] 耿江江. 金属粉末的组合雾化过程规律与3D打印成形性研究[D].广州:华南理工大学,2017.
(GENG J J.A Study on Process Principles of Hybrid Atomization of Metal Powders and 3D Printing Formability[D]. Guangzhou: South China University of Technology, 2017.)
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
科技部重点研发资助项目(2021YFB3702501)
{{custom_fund}}