|
|
Cause analysis and improvement of poor sealing between slide surface of tundish |
ZENG Li1, LIU Hang2, MEI Ning2, LIU Yan-qiang1, XIAO Hua-sheng2, YANG Chun-bao2 |
1. Manufacture Division,Shougang Jingtang Iron and Steel Co., Ltd., Tangshan 063200, Heibei, China; 2. Steelmaking Department,Shougang Jingtang Iron and Steel Co.,Ltd.,Tangshan 063200,Hebei,China |
|
|
Abstract In order to solve the problems of secondary oxidation of liquid steel and steel spilt between plates caused by poor sealing between tundish plates in the production process of continuous casting machine, the influence of quick change mechanism oil cylinder, mechanism slideway, mechanism spring pressure, water mouth baking and water mouth plate surface on sealing effect was analyzed by field tracking system.The results show that the lax sealing between plates is mainly related to the equipment accuracy of the quick change mechanism, the surface quality of the nozzle plate and the baking process operation. By monitoring the slide and spring pressure of the quick change mechanism, optimizing the baking system of the upper nozzle and submerged nozzle, standardizing the flatness of the plate surface, applying graphite emulsion on the plate surface, and implementing fine operation, the sealing performance between tundish plates is greatly improved in the process of continuous casting production, the qualified rate of argon pressure of inter plate seal was increased from 75% to 98%, and the occurrence rate of mold liquid level fluctuation over ±3 mm caused by inter plate suction decreased from 3.0% to less than 0.1%, the steel growth rate between plates is reduced from 1.5% to less than 0.01%.
|
Received: 29 April 2022
|
|
|
|
[1] |
郭文明,龙飞虎,肖波.高钛炉渣碳化过程碳粉的高效利用[J].河北冶金,2022(10):21.
|
[2] |
董继亮,李硕,卢彬,等.转炉渣高效处理工艺的应用[J].河北冶金,2022(7):75.
|
[3] |
胡敏,李阳,郝伟哲,等.炼钢厂高效、协同生产组织创新[J].河北冶金,2022(5):70.
|
[4] |
蒋鲤平,于飞.120 t转炉高效化冶炼工艺研究[J].河北冶金,2021(7):46.
|
[5] |
郑明泉,高冰.3 200 m3高炉高效生产实践[J].河北冶金,2021(5):45.
|
[6] |
王新东, 黄永建, 彭绍峰, 等. “绿色、智能、高效”的新一代电炉短流程特钢厂--河钢石钢新区[J]. 钢铁, 2022, 57(9): 1.
|
[7] |
杨利彬. “十三五”中国炼钢关键技术进步及思考[J]. 钢铁, 2022, 57(8): 1.
|
[8] |
李宝宽, 黄雪驰, 刘中秋, 等. 现代电渣重熔先进技术特征与演进[J]. 钢铁, 2022, 57(6): 1.
|
[9] |
周景一, 朱立光, 孙立根, 等. Nb微合金化汽车用TWIP钢的研究进展[J]. 中国冶金, 2022, 32(3): 9.
|
[10] |
邓勇,杨利彬,汪成义. 马钢低碳钢板坯高拉速连铸技术的应用[J]. 连铸,2022(1):72.
|
[11] |
王田田,杨树峰,李京社,等. 连铸坯皮下气泡缺陷成因及控制[J]. 中国冶金,2020,30(12):35.
|
[12] |
刘志远,杨全海,王重君,等. 板坯高拉速的研究与实践[J]. 连铸,2021(4):72.
|
[13] |
周秋月,朱坦华,张立峰,等. 非稳态浇铸对结晶器卷渣定量影响的大涡模拟[J]. 钢铁,2022,57(4):68.
|
[14] |
赵建平,王帅,冯帅,等. 减少唐钢中薄板坯连铸机黏结实践[J]. 连铸,2020(1):74.
|
[15] |
杨春政. 高效低成本洁净钢生产实践探索[J]. 钢铁,2021,56(8):20.
|
[16] |
肖茂元,韩乐,张鹏,等. 冷轧钢板表面冶金缺陷遗传性研究[J]. 炼钢,2021,37(2):70.
|
[17] |
郑万,寇锦荣,陈小龙,等. 高速连铸结晶器卷渣缺陷的特征、演变及控制[J]. 炼钢,2021,37(4):30.
|
[18] |
朱苗勇. 高拉速连铸过程传输行为特征及关键技术探析[J]. 钢铁,2021,56(7):1.
|
[19] |
梅宁,刘延强. 板坯连铸过程结晶器角缝夹钢控制[J]. 连铸,2020(2):19.
|
[20] |
朱坦华,周秋月,任英,等. 二次氧化过程IF钢中间包中夹杂物演变行为[J]. 钢铁,2020,55(3):35.
|
[21] |
陈建梁,梅峰,胡娇. 稳态浇铸下低碳铝硅镇静钢卷渣产生的原因和控制对策[J]. 炼钢,2020,36(3):51.
|
[22] |
徐伟,赵建平,王帅,等. 快换浸入式水口时板间漏钢的原因分析及控制措施[J]. 连铸,2019(4):6.
|
[23] |
朱明伟. 快换水口过程板坯质量的改进措施[J]. 连铸,2014(4):43.
|
[24] |
王爱东,徐海芳,孙雅平,等.唐钢板坯连铸机快换水口夹钢的原因分析[J]. 连铸,2020(5):70.
|
[25] |
彭勇生,左鹏,陈飞,等. 水口快换机构板间吸气原因分析[J]. 冶金设备,2019(增刊1):146.
|
[26] |
刘志国,王洪兴. 连铸保护浇注工艺改进[J]. 中国冶金,2013,23(8):39.
|
[27] |
马娥,鲁献辉,刘红艳. 板坯连铸结晶器液位波动研究及控制实践[J]. 连铸,2015(4):35.
|
[28] |
贾冬冬,姜恩会,张文涛. 连铸板坯浸入式水口吹氩工艺研究[C]// 2019全国高效连铸应用技术及铸坯质量控制研讨会论文集.扬州:河北省金属学会,2019.
|
[29] |
刘鑫,王帅,赵建平,等.中薄板坯连铸机板间漏钢的原因分析及控制措施[J]. 铸造技术,2021,42(3):207.
|
[30] |
韩全军.快换浸入式水口异常对钢板内部质量的影响[J]. 特钢技术,2021,26(1):35.
|
[31] |
李继,陈守杰,王勇源,等.小板坯粘结漏钢原因分析及控制措施[J].河北冶金,2022(4):51.
|
[32] |
朱苗勇. 高拉速连铸过程传输行为特征及关键技术探析[J]. 钢铁, 2021, 56(7): 1.
|
[33] |
王皓, 王国连, 马硕, 等. MCCR产线低碳钢高拉速技术研究与应用[J]. 中国冶金, 2022, 32(12): 88.
|
[34] |
张洪才, 印传磊, 郑力宁, 等. 浸入式水口结构对连铸大圆坯质量的影响[J]. 中国冶金, 2022, 32(9): 57.
|
[35] |
胡群, 张硕, 王璞, 等. 大方坯结晶器内液面波动与卷渣行为[J]. 中国冶金, 2020, 30(6): 63.
|
[1] |
WANG Jia-hui, ZHANG Hua, FANG Qing, ZHOU Jia-chao, XIE Xu-qi, NI Hong-wei. Physical simulation on optimization of flow field in a tundish by top-swirling turbulence inhibitor[J]. Iron and Steel, 2023, 58(2): 72-82. |
[2] |
LIU Dong-xu, GONG Wei, ZHU Jiang-jiang, CAO Rui-hong, FAN Ding-dong, DENG Ai-jun. Numerical simulation and optimization of flow field in tundish by flow control device[J]. CONTINUOUS CASTING, 2023, 42(2): 10-18. |
[3] |
TIAN Bao-sheng, FANG Qing, WANG Jia-hui, WU Xian-min, HUO Li-qiao, ZHANG Hua. Physical modelling on optimization of flow behaviors in a two-strand tundish by gas curtain[J]. CONTINUOUS CASTING, 2023, 42(2): 19-27. |
[4] |
ZHOU Ye-lian, JIANG Zhong-kuai, ZHANG Fa-bin. Control process and mechanism analysis for tundish fluxes to form the solidified crusts[J]. CONTINUOUS CASTING, 2023, 42(2): 113-119. |
[5] |
Hang-hang Zhu, Min Wang, Cheng Yao, Zhong-liang Wang, Xiao-liang Wang, Yan-ping Bao. Influence of non-iso-velocity casting on flow-field index of a 41-ton six-strand Tundish by physical and numerical modeling[J]. JOURNAL OF IRON AND STEEL RESEARCH,INTERNATIONAL, 2023, 30(1): 51-63. |
[6] |
ZUO Xiao-tan, ZHAO Li, ZHANG Ya-bing, ZHANG Xu-bin, WANG Qiang-qiang. Effect of gas curtain in tundish on flow field and inclusions removal[J]. CONTINUOUS CASTING, 2023, 42(1): 24-30. |
|
|
|
|